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1 Brief view 
 The ‘MolRun’ is simulator 3D rigged-body ball-rod classical dynamics. 

The program reproduces the interactive world of collective mechanics determined by 

intermolecular and Coulomb forces. These models have a wide area of applications from 

thermodynamics to biology. It is well-known that coulomb forces play a central role in the mutual 

recognition of biological molecules [1]. 

The program includes algorithms that can be grouped as follows. 

The physical modeling algorithms: numerical integration of Newton's and Euler's 

equations, an algorithm for calculating the principal values and principal axes of the inertia tensor, 

an algorithm for calculating physical average values, an algorithm for calculating the volume given 

by an irregular set of points, a cluster search algorithm. 

The visualizing of 3D world algorithms: an algorithm for constructing a central projection 

on an arbitrary plane, an algorithm for triangulating a surface, a ray tracing algorithm for a sphere 

and a plane element, an algorithm for a video file creating. 

The superstructure algorithms: a series of calculation supervisor, a three-dimensional 

molecular editor. 

Molecular mechanics concern different part of physics and mathematics: classical 

mechanics, and kinetics, thermodynamics, statistical physics, electrostatics, vector and tensor 

algebra, linear algebra and geometry, the theory of differential equations, and finally, the theory of 

numerical methods.  

This description is an invitation to follow the same path that the author did, to perceive the 

theoretical material necessary for molecular dynamics modeling.  

Perhaps the description will seem too detailed in terms of mathematical transformations, but 

remember how much time sometimes takes to find a lost sign in the program code, and also, thick 

books on mathematics are read faster than thin ones! 

The MolRun program runs under the Windows operating system, it is made the portable 

style, does not require installation. 

The program available at http://www.tricemem.com  

 

2 The Molecule 
A molecule is defined as a rigid formation of point masses, point charges, and central forces 

defined by interaction potentials. Each atom has a mass, charge and coefficients that determine the 

potential for interaction with other atoms. 

2.1 Mechanical model of the molecule 

The complete picture of the mass distribution of the molecule is determined by 6 values written 

in the form of a diagonally symmetric matrix 
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The inertia tensor I is a rank two tensor, a 3x3 matrix that is reduced to a diagonal form by 

rotating the coordinates. The inertia tensor defines an ellipsoid of inertia whose equation can be 

written explicitly 
2 2 2 2 2 2 1xx yy zz xy xz yzI x I y I z I xy I xz I yz      . (2.2) 

 It would seem that if there is an explicit expression for the ellipsoid of inertia (2.2) is 

written, is it so difficult to find its axis? It turns out, yes! The problem of finding the principal axes 

of inertia is solved in [2] the authors find the gradient vector to the surface of the ellipsoid, which 

will be normal to the surface of the ellipsoid and determine the direction of the principal axes. The 

result is an eigenvalue problem and eigenvectors of the matrix (2.1). In General, you need to solve 

the problem of eigenvalues and eigenvectors of the matrix I or equation (2.3), as it is written in any 

course of mechanics. An example of solving the problem of finding eigenvalues and eigenvectors of 

the inertia tensor can be found in [3]. 

det( ) 0I E   (2.3) 

If determinant (2.3) equal to zero, then nontrivial solutions of a homogeneous system are 

presence. And for a heterogeneous system – it is the opposite, for existence of the solution, the 

determinant must not be zero. The first thing must be done is write the determinant (2.3) and solve 

the cubic equation (2.4) 
3 2

1 2 3 0a a a       

1 xx yy zza I I I    

2 2 2

2 xz yz xy xx yy xx zz yy zza I I I I I I I I I       

3 det( )a I  

(2.4) 

The  coefficients are invariants of the tensor I, and they independent of rotation. You can 

rotate the selected molecule, look at the main axes of inertia, the inertia tensor and the values 

1 2 3a a a
 by selecting the information block i3 (Fig. 2.1). The constancy of the quantities 

1 2 3a a a
 to prove that they are calculated correctly. 

  

Fig. 2.1. The Information block “i3” – principal 

axes of inertia tensor. 

Fig. 2.2 The principal axes found solution report. 

The cubic equation (2.4) is solved through the trigonometric Fourier formulas, however, for 

large coefficients that appear in large molecules, the accuracy of trigonometric formulas is not 

sufficient, therefore, if necessary, to found roots in the vicinity of first approximation. The cubic 

equation is solved by Newton's method to achieve the specified accuracy 10
-5

. 
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Founded eigenvalues 1, 2, 3 are the inertia moments about the principal axes. Denote 

them 

1 2 3X Y ZI I I     , (2.5) 

It is not very important what indexes we assign to the moment values, because then we will 

find the vectors corresponding to them. The eigenvalues 1, 2, 3 are one by one substituted in the 

equation I - E=0 and the eigenvectors (a11, a12, a13),  (a21, a22, a23), (a31, a32, a33) of tensor I are 

found, which are the main axes of inertia.  

The eigenvectors are found by the Gauss method, the original matrix and the diagonal matrix 

are shown in the figure. 2.2. since linear dependence of the equations (2.3), one of the lines of the 

diagonal matrix contains zeros, which is a good sign confirming the correctness of the solution 

found. The found eigenvectors of the inertia tensor are stored in the program as direction cosines, 

which are calculated as (for all three vectors) 

 

1 1 1
11 12 13

1 1 1

ev ev ev

ev ev ev

x y z
a a a

r r r
   , 2 2 2

1 1 1 1ev ev ev evr x y z    
(2.6) 

and are displayed on the Atoms tab (Fig. 2.3) in the fields Inertia Axis(1), Inertia Axis(2), Inertia 

Axis(3), and in the editing window (Fig. 2.1) are shown as vectors signed by I1, I2, I3.  

If you click on the “Rotate Eigenvectors to WCS” button, the program will rotate all atoms 

of the edited molecule according to the formulas 

11 12 13x x a y a z a      

21 22 23y x a y a z a      

31 32 33z x a y a z a      

(2.7) 

as a result of rotation of the direction cosines given by the matrix (2.6), the main axes of inertia will 

be aligned with the axes of the world coordinate system (WCS), and the recalculated inertia tensor 

will take the diagonal form (Fig. 2.4). 

 

 

Fig. 2.3 Edit molecule information window. Fig. 2.4 Rotation that combines the main axes of 

inertia with the axes of WCS. 

For monatomic molecules, the moment of inertia is considered as the inertia of the ball 

5 2 mR , where R is the radius of the atom. For molecules whose atoms are arranged on the same 
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axis, the characteristic equation (2.3) will have only two roots. In this case, the program contains 

two eigenvectors, and the third vector is constructed as a vector product of the eigenvectors found. 

The final touch is the coordinate system of triple vectors (I1, I2, I3) must be a right-handed 

coordinate system. Or, more precisely, the orientation of the local coordinate system should be the 

same as the orientation of the world coordinate system. 

 

2.2 The force field 

The force field is constructed as the sum of atom-atomic potentials and Coulomb forces of 

point charges.  

When choosing the type of potential describing the atom-atomic interactions, it is natural 

tendency a compromise between the physical meaningfulness and computational simplicity of the 

model function, today we know a large number of model potentials, the main of which are given 

below [4].  

The Potential of Sutherland 

6

,

( ), r

r
U

u r



 

 
 

 
. (2.8) 

The Lennard-Jones potential 

12 6

4U
r r

 

    

     
     

. (2.9) 

The minimum of the potential is at the point 
6 2U     – point of intersection of the axis 

r, and the minimum of the potential well, respectively.  

The potential of the “6-exp” 

6

CrA
U Be

r

  , (2.10) 

The solutions for the inflection point are given by the transcendental equation. 

The Potential of the Buckingham 

6 8

BrU Ae
r r

  
   , (2.11) 

Modified Buckingham potential 

6
6

exp 1
1 6

m

m

rr
U

r r




 

     
       

      

, (2.12) 

where  – is the depth of the potential pit.  

The Morse potential is used to describe the energy levels of the vibrational degrees of 

freedom. The Morse potential is finite at zero distance and is less consistent with experience at large 

distances. Similar properties have the potential of Rydberg. 

      exp 2 2expm mU D r r r r       , (2.13) 

The potential Varshni 



6 

 

  2 21 expm
m

r
U D r r

r


 
    

 
, (2.14) 

The potential SPF 

2

0 1

n

m m
n

r r r r
U b b

r r

      
     

     
 , (2.15) 

Experience has shown that one term n=1 is clearly not enough for modeling the potential of 

SPF, the expression for the derivative is too cumbersome.  

By discarding spectroscopic approximations, one can narrow the choice to three 

representations: The Lennard-Jones potential, the modified Buckingham potential, and the “6-exp” 

potential.  

Below are graphs of these potentials for the parameters rmin =1.5, (rmin) = - 4. To ensure 

such conditions for the potential of the “6-exp”, we have to solve the transcendental equation, for 

the potential of the Lennard-Jones two parameters completely define the curve, the potential of the 

Buckingham remains a free parameter , which can vary the slope of the curve (Fig. 2.7). 

Fig. 2.5 The Lennard-Jones potential 

(blue) and it’s derivative (red) =4; 

=1.3486.  

Fig. 2.6 The “6-exp” potential (blue) and 

it’s derivative (red). 

A=6.52; B=9.6887; C=0.5.  
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Fig. 2.7 The modified Bukingham potential 

(blue) and it’s derivative (red). 

=4.0; =1.0; 3.0; 5.0; rm=1.5  

The presence of a free parameter and an explicit representation of physically meaningful 

values directly in the potential formula determined the choice of the type of potential curve in the 

form of a modified Buckingham potential 

6
6

exp 1
1 6

m

m

rr
U

r r




 

     
       
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. (2.16) 

The derivative of the potential 

7
6 1

exp 1
1 6

m

m m

rr
U

r r r






     
         

      

. (2.17) 

After the potential approximation is chosen, it is necessary to fill the system with paired 

interaction atoms. Different papers use different approximations, therefore, below are the results of 

the approximation of different potential curves in the form of Buckingham potential. 

Fig  2.8 Pair potentials for  inert gases by 

“6-12” (continuous line) and their 

approximation by Buckingham (doted) [4].  



8 

 

Fig. 2.9 Pair potentials in Buckingham 

form [5].  

 

Fig. 2.10 Pair potentials in form Morze 

(continuous line) and Buckingham (doted) 

[6].  

Fig. 2.11 Pair potentials in form Morze 

(continuous line) and Buckingham (doted)  

[6].  
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Рис. 2.12 Pair potentials in form Morze 

(continuous line) and Buckingham (doted)  

[6].  

Table 2.1 

The modified Buckingham potential parameters. 

 , eV  rm,   , eV  rm,  

Не 0.000880 5.4 2.869 C-С 0.004139 4.5 3.9 

Ne 0.003067 5.1 3.086 С-H 0.001487 3 3.61 

Ar 0.010323 4.8 3.822 Н-Н 0.000562 5 3.31 

Kr 0.014735 4.7 4.041 C-О 0.00415 5.5 3.64 

Xe 0.019044 4.9 4.602     

Na 0,06334 1,8 5,336     

Al 0,2703 3,3 3,253     

K 0,05424 1,8 6,369     

Ca 0,1623 3 4,569     

Cr 0,4414 4,1 2,754     

Fe 0,4174 3,7 2,845     

Ni 0,4205 3,4 2,78     

Cu 0,3429 3,7 2,866     

Rb 0,04644 1,6 7,207     

Sr 0,1513 2,9 4,988     

Mo 0,8032 4,1 2,976     

Ag 0,3323 4 3,115     

Cs 0,04485 1,5 7,557     

Ba 0,1416 2,6 5,373     

W 0,9906 4,1 3,032     

Pb 0,2348 4,1 3,733     

Mo 0,997 3,9 2,8     

W 1,335 1,8 1,894     

Au 0,56 2,7 1,922     

It remains to put together selected pair of atoms and a set of parameters describing the 

interaction potential. The program, this is done as follows. The choice of potential is determined by 

the field ‘atom type’. The 'atom type’ field stores a single-byte value, which is the default number of 
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the atom in the periodic table, this parameter is available on the' Atoms’ tab, Fig. 2.13.  

On the ‘Force’ tab, Fig. 2.14 the pairs of atoms with the same numbers and three parameters 

, , rm, determining the interaction potential (2.17) are given. The ‘Force’ tab of the ‘Edit’ window 

is a reflection of the file with the extension *.ptn, which stores a list of all potentials used in the 

scene. File format *.ptn is described in § 4.8.  

On the ‘Molecule’ tab of the same ‘Edit’ window, there is a 'Check Force List’ button, which 

goes through all possible pairs of atoms of the loaded scene and forms lines with the description of 

interaction potentials. If there are parameters of the pair interaction potential in the periodic table, 

for atom ‘A’, and for atom ‘B’, then the parameters 

, ,

,, ,
2 2 2

m A A m B BA A B B A A B B
A B A B m A B

r r
r

   
      

  

 
   .  

 An attempt was made in the article [7] to find a universal rule for combining the interatomic 

interaction potentials. At the current stage of the program implementation, the potentials are 

combined as arithmetic means for the coefficients. 

In General, the contents of the field ‘atom type’ can be disposed of quite freely, since it is 

used only for communication with the list of interaction potentials. For example, the value “0” is 

used for points where the charge density is localized. Values greater than 90 can be used if you want 

to play with arbitrary particles that are not atoms from the periodic table. 

  

Fig. 2.13 There are fields “atom type”, pointed 

the pair interaction potential. 

Fig. 2.14 Interaction potential parameters for 

atoms 8-0. 

 

3 Calculation model 
Bringing the equations to dimensionless form allows to ‘drive’ the numerical values of the 

variables in the range close to one. Usually this problem is solved by dividing the variable by some 

characteristic constant. But this problem for the microcosm has already been solved, there are a 

large number of units of measurement introduced to describe the phenomena of molecular scale.  

Below, we will bring all the necessary equations to the scale of numerical values within no more 

than hundreds by simply selecting the most appropriate units of measurement. We write bona fide 

laws of classical mechanics in units of molecular scale. 
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3.1 The equation of motion 

Let there be an interaction potential U, which is a change in the energy of the system when an 

element is shifted by a unit distance. The force due to the change in potential is the ratio of the 

energy increment to the coordinate increment. Units of variables will be signed in the lower index, 

and enclosed in brackets, then, 

 

 

19

( )( ) ( ) ( ) 9 9

(N) (eV/A)10
( ) ( )( ) ( )

1,6021 10
1,6021 10 1,6021 10

10

eVJ J eV

m AA m

UU U
F F

x xx



 



   
       
  

. 

(3.1) 

For the equation of motion, obtain 

 

( ) 9

2
( )( ) ( ) ( ) ( / ) 18

2 27
( ) ( ) ( )( ) ( )

1,6021 10

0,9653 10
1,6597 10

eV

Am N N eV A

S Kg amuamu Kg

U

xd x F F

dt m mm





 
    

    
 

, 

2 10 2

( ) ( ) ( ) 2 10

2 2

(??) ( ) (??)

( 10 )
10

( 10 )

A m A n

n

S

d x d x

d t dt








 


. 

(3.2) 

Choose the time scale n so that the factor 10
18

 is reduced, take 10 femtoseconds as a unit of time, 

then 
14

( ) (10fS) 10St t   , (3.3) 

and the equation of motion becomes 
2

( ) ( / )

2

(10 ) ( )

0,9653
A eV A

fS amu

d x F

dt m
  . (3.4) 

That is, the motion of atom a mass of 1 u at the scale of 1 Angstrom, 10 femtoseconds, 

practically does not differ from the movement of a body of mass 1 kg at the scale of a meter a 

second. The equation of rotation written for one degree of freedom is as follows 

2

2

( ) (N m)

2

( ) ( )

rad

S Kg m

d M

dt I

 



 . (3.5) 

We write down the transformation of the moment of force and moment of inertia to the same 

units as the equation of motion, while the force is still considered in units of “electronvolt on 

Angstrom”, 

 

   2

( ) 9 10 ( )
( ) ( )( )

( )(N m) ( ) ( ) 28

2 227 10
( ) ( )( ) ( ) ( )( ) ( )
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U U
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I m xm x

 



 

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       

   
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2 2 2

( ) ( ) ( ) 28

2 14 2 2

( ) (10 ) ( ) (10 )

10
( 10 )

rad rad rad

S fS S fS

d d d

dt d t dt

  
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

 

(3.6) 

A “miracle” happened, all the exponents were destroyed, and the equation of rotation takes the 

following form 
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( )

( )2

( ) ( )

2 2

(10 ) ( ) ( )

0,9653

eV

A

rad A

fS amu A

U
x

d x

dt m x






   

(3.7) 

Total, the units of measurement for the atomic scale in which the program operates are as follows: 

Time 14

( ) (10 ) 10S fSt t    

(3.8) 

Distance 10

( ) ( ) 10m Ax x    

Velocity 4

( /S) (A/10fS) 10m    

Mass 27

( ) (amu) 1,6597 10Kgm m     

Force ( )

( )

eV

A

U

x




 

Moment of Inertia 2

( ) ( )amu Am x  

Charge 19

( ) ( ) 1,6021 10C eq q     

 

3.2 Charge interaction 

To write Coulomb’s law 

2

2

( ) ( )

( ) 2

( )C

1

4
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N

m

N m

q q
F

x
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  
(3.9) 

in units of atomic scale, use the coefficient (3.1) and write the force in units (eV/Å)  

  
 

2
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38
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2 9 20 12 2
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14,3993

4 3,14159 8,854 10 10 10

e e e e

A A

q q q q

x x



  
    

   
. 

(3.10) 

 

3.3 External electricity field 

Let there be an external electric field of tension E (V/m), the field will act on the charge with 

force 

     
19

( ) ( ) ( )/ /( )
1,6021 10N C eV m V mC

F q E q E      . (3.11) 

To compare with (3.1), obtain 

 
10

( / ) ( ) /
10eV A e V m

F q E    . (3.12) 

The resulting factor 10
-10

 will not disappear, which means that the intramolecular electric fields 

are 10
10

 times greater than the external one! How, then, does the dielectric between the capacitor 

plates work, which gives appreciable response at millivolts? 
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To overcome a multiplier of the order of 10
10

, we need a factor of comparable scale, such a 

factor can only be the number of particles. With the number of particles of the order of 10
23

, the 

fluctuations caused by molecular chaos are so well averaged that the asymmetry introduced by an 

external force, even by 10 orders of magnitude less, gives an average appreciable response.  

However, in our case, understanding the mechanism of action of the external electric field does 

not bode well. The program manipulates hundreds of atoms, with such a number of particles, direct 

averaging of the orientation contribution to the polarizability of a unit volume is not possible. 

Let the molecule have a dipole moment vector , at an angle  with the x axis, the external 

electric field vector E, coincides with the direction of the axis x. The moment of forces is acting to 

molecule is sin( )E  , to convert the moment of forces to atomic scale units (3.8), 

    30 19

(D) ( / ) ( / )( ) ( )( )

3.3356 10 sin( ) 1.6021 10V m eV A AC m N mN m

E M  

 

      , (3.13) 

where 
( / )eV A AM 

- the moment of forces acting to a molecule. The force expressed in units of electron 

volts per angstrom, and the distance is expressed in angstroms. From (3.13) 
11

( / ) (D) ( / ) sin( ) 2.082 10eV A A V mM E  

    , (3.14) 

approximately the same ratio as (3.12). 

The dipole energy in the external field cos( )E  , so the distribution function [8]  

cos( ) cos( )

cos( )
0

0

( )
( )

a a

a

e e
f

I ae d

 







 


 


,  

E
a

kT


 , (3.15) 

where I0(a) - modified Bessel function of the I-

kind.  

A water molecule dipole moment is 

1.8 D, the dimensionless value a at zero degrees 

Celsius and a field of 1000 V/m will be 1.6×10
-6

, 

the probability density (Fig. 3.1) does not differ 

from the uniform distribution. 

So for example the relation 
(0) ( 2)f f 

 

for the water molecule in uniform field 1000 

V/m at temperature 0°С, gives the value 

1.0000016. So, the probability of the dipole 

orientation in the direction of the external field 

differs from the probability of orientation 

perpendicular to the direction of the field in the 

sixth sign. 

Let's average the magnetic moment projection of the x axis according to the distribution 

(3.15), for a sample containing N molecules 

cos( )

0 0

cos( )
( )

a

x

N
М e

I a



 


  ,   (3.16) 

on the integration interval from 0 to /2, the projection of the magnetic moment will give a 

contribution with a positive sign, on the interval from /2 to , the projection of the magnetic 

moment will give a contribution with a negative sign. Due to the fact that the distribution is close to 

 

Fig. 3.1 The distribution density from the dipole 

moment vector orientation angle. 
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uniform, the integral is a very small quantity, and N is a very large quantity. 

Considering that a small value, expand the exponent and limited to the first terms of 
expansion, also replace the zero-order Bessel function from a small argument with unit 

0 0

cos( )(1 cos( ))
( ) 2

x

N Na
М a

I a




  


    . (3.17) 

The formula for the average magnetization of the sample includes a large value N and a 

small value a as a multiplication, so there is a response with a very small asymmetry in the 

distribution of dipoles. 

Thus, when modeling molecular dynamics, it will not be possible to visually distinguish the 

influence of an external field on the behavior of hundreds of particles, unless the external fields are 

reduced to an atomic scale, such as, for example, the needle tip of a tunneling microscope. 

 

3.4 Resultant force 

After the pair of interacting particles is determined and the distance r between them is 

calculated, the formula (2.17) is the scalar value of the force F, which acts on the atom with 

coordinates (x1, y1, z1) from the atom with coordinates (x2, y2, z2). Let's construct a vector directed 

from point 1 to point 2, make it of unit length and multiply by the found value F 

2 1 2 1 2 1, , .X Y Z

x x y y z z
F F F F F F

r r r

  
    (3.16) 

Find the moment of force acting on the molecule at center of mass point with coordinates 

r0 = (x0, y0, z0). 

 1 0M r r F   , (3.17) 

in the matrix form 

1 0 1 0 1 0

X

Y

Z X Y Z

M i j k

M x x y y z z

M F F F

 
 

    
 
 

,  

in the component form 

1 0 1 0 Y

1 0 1 0

1 0 1 0

( ) ( )

( ) ( )

( ) ( )

X Z

Y X Z

Z Y X

M y y F z z F

M z z F x x F

M x x F y y F

   

   

   

. (3.18) 

Let's deal with the signs and direction of rotation. Consider two cases, in the first, the 

positive non-zero component of the force vector is FY, in the second, FX, and the force vector lies at 

the XY plane. The moment vector of forces will have only one nonzero component, MZ, which is 

shown in Fig. 3.2. From figure 3.2, we see that if you look in the direction of the moment force 

vector, the rotation should always be clockwise. 
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Fig. 3.2. There are force vector and the moment of forces vector. 

The moment of force vector cause to change of the angular velocity vector. If at the initial 

moment the body isn’t moving, under the moment of forces, it will begin to rotate at the angular 

velocity 2 1

1
M t

I
    , in such a situation, the vector of the angular velocity is directed the 

same as the moment  of forces vector.  

The next question is the transformation of atom coordinates to reflect the action of the angular 

velocity. Since we have found that the rotation under an act of the moment of forces occurs 

clockwise, if we look in the direction of the vector of the moment of forces, find the coordinate 

transformation corresponding to this rule. 

 

3.5 The elementary rotation 

Flat rotation can be attributed to elementary transformations, however, flat rotation is the basic 

transformation that determines all combinations of rotations recorded in the matrix representation, or 

in the quaternion algebra. Because of the special importance of rotation transformations, they are 

written in detail. 

  

Fig. 3.3. Radius vector rotation. Fig. 3.4. Coordinate system rotation. 

Consider the rotation of the radius vector to the angle  along the z-axis, rotation will lead to 

the transformation of the coordinates x, y (Fig. 3.3). We write the trigonometric identity 

cos( ) cos( )cos( ) sin( )sin( )         (3.19) 
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sin( ) sin( )cos( ) cos( )sin( )        . 

Replacing cos() and sin() ratios of the triangles and multiplying all the length to the radius 

vector, we obtain the transform coordinates of point 2 coordinates of point 1 

1 2 2cos( ) sin( )x x y    

1 2 2sin( ) cos( )y x y    

1 2

1 2

cos( ) sin( )

sin( ) cos( )

x x

y y

 

 

    
    
    

. (3.20) 

Find the transformation, the coordinates of point 1 to the coordinates of point 2. Multiply the 

upper equality by cos(), and the lower one by sin() and add them, then multiply the upper 

equality by sin(), and the lower one by cos() and subtract the upper one from the lower one. 

2 1 1cos( ) sin( )x x y    

2 1 1sin( ) cos( )y x y     

2 1

2 1

cos( ) sin( )

sin( ) cos( )

x x

y y

 

 

    
    

    
. (3.21) 

Now consider the rotation of the coordinate axes (Fig. 3.4). Same as before for triangles 

 1 2 2cos( ) cos( ) sin( )
x x y

r r r
        

1 2 2sin( ) cos( ) sin( )
y y x

r r r
       . 

(3.22) 

from which, 

1 2 2cos( ) sin( )x x y    

1 2 2sin( ) cos( )y x y    

1 2

1 2

cos( ) sin( )

sin( ) cos( )

x x

y y

 

 

    
    
    

. (3.23) 

Exactly the same as (3.20), but in the first case the rotation was clockwise, so the coordinate 

system is rotated counterclockwise. Previously, we have already obtained the inverse 

transformation, which for the rotation of the coordinate system has the form 

2 1 1cos( ) sin( )x x y    

2 1 1sin( ) cos( )y x y     

2 1

2 1

cos( ) sin( )

sin( ) cos( )

x x

y y

 

 

    
    

    
. (3.24) 

Total, we conclude that the rotation of the radius vector is equivalent to the rotation of the 

coordinate system in the direction of the reverse rotation of the radius vector. 

In the monograph [9] is called the active point of view the transformation that rotates the 

radius vector in which the coordinate system remains unchanged. Rotation as a transformation of the 

coordinate system is called a passive point of view.  

Now let's expand the space to three-dimensional and discuss the choice of axis orientation. 

Obviously, due to the isotropy of space, the first two directions OX and OY can be chosen 

arbitrarily. Now the space has acquired two selected directions, consider the rotation from the OX 

axis to the OY axis and by the rule of the right screw determine the direction of the OZ axis. But we 

have no priority what the side to look at the XY plane. When viewed from the “opposite” side, the 

clockwise direction will look like the counterclockwise. We obtain that the determination of the 

coordinate system orientation depends on the orientation of the observer.  

To distinguish the direction of the right rotation from the left rotation, without having some 

template, it seems, impossible. 

Returning to §3.1, and using the transformations of the elementary rotation, to write the 

transformation of rotations, which will make the body rotating at an angular velocity 

( , , )X Y Z    . 
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Fig. 3.5. Rotation transformations for each plane of a rectangular coordinate system. 

As before, we write down the sine of the sum of the angles and the cosine of the sum of the 

angles shown at Fig. 3.5, we obtain the rotation matrix for each of the quadrants of the coordinate 

system. 

If we look in the direction of the angular velocity vector, the rotation is clockwise, as we 

demand at §3.4: 

-around X axis: 

2 1

2 1

cos( ) sin( )

sin( ) cos( )

y y

z z

 

 

    
    

    
, (3.25) 

-around Y axis: 

2 1

2 1

cos( ) sin( )

sin( ) cos( )

x x

z z

 

 

    
    
    

, (3.26) 

-around Z axis: 

2 1

2 1

cos( ) sin( )

sin( ) cos( )

x x

y y

 

 

    
    

    
. (3.27) 

  

Now add the matrix to the size of 3x3 and multiply with Maple 

cos cos sin cos sin sin cos sin sin sin cos cos

cos sin cos cos sin sin sin cos sin sin cos sin

sin sin cos cos cos

           

           

    

  
 
   
  

. (3.28) 

We have obtained a matrix that implements a sequence of rotations around The X, Y, Z axes. 

Now ease to write infinitesimal turn, which takes place in the interval dt. Limited by the 

values of the first order of smallness, discard the product of two or more sinuses, replace the cosines 
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with units, and sine values replaced by their arguments 

1

1

1

 

 

 

 
 
 
  

. (3.29) 

 

3.6 Parameterization of the orientation 

The choice of parameters that determine the orientation of the body, is not a trivial task. 

Transformations (3.20) are sufficient to describe the Euler angles. Euler angles are a 

sequence of rotations relative to three axes, each of the rotations is carried out relative to the current 

position of the axes, the standard sequence of rotations Z, X, Z. Nothing special about the fact that 

the Z axis occurs twice, it also changes its position as a result of the previous rotation. The sequence 

of turns on angles  , ,    is shown in Fig. 3.6, at the initial time both coordinate systems are the 

same. 

 

Fig. 3.6. Euler angles are a sequence of rotations relative to the current position of the coordinate 

axes. 

Now we can write down the matrix of plane rotations around the axes Z, X, Z, and 

multiplying them to obtain the resulting rotation transformation. We use a matrix of the form (3.20), 

the rotation operation will be interpreted as a transformation of the coordinate system (passive point 

of view) 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

ZA

 

 

 
 

  
 
 

 

(3.30) 2

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

XA  

 

 
 

  
  

 

3

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

ZA

 

 

 
 

  
 
  .

 

To multiply AZ3AX2AZ by the Maple, we obtain the result turn: 
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cos cos sin cos sin cos sin sin cos cos sin sin

sin cos cos cos sin sin sin cos cos cos cos sin

sin sin sin cos cos

A

           

           

    

  
 

     
   . 

(3.31) 

The rotation matrix coinciding with (3.31) is found in many courses of mechanics [10, 9]. 

In the numerical implementation of the rotation operation, it is most convenient to store the 

orientation in the form of a matrix of guide cosines, since it is also a matrix of rotation.  

We write a matrix that stores the orts of the axes of the movable coordinate system (Fig. 3.5) 

X3=(a11, a12, a13), Y3=(a21, a22, a23), Z3=(a31, a32, a33) 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 

  
 
 

. (3.32) 

 Equating (3.31) and (3.32) we can express the Euler angles through the guide cosines 

31

2

33

arcsin( )
1

a

a
 


, 

33arccos( )a  , 

33

2

33

arccos( )
1

a

a
 


 или 13

23

a
arctg

a


 
  

 
. 

(3.33) 

If =0, we get a33=1 and divide by zero! The problems with small angles of nutation, chase 

the description of the orientation using Euler angles continuously.  

From the matrix guides of the cosines of (3.32) we can obtain the parameters of Rodrigues-

Hamilton [11], they are the same, quaternion
 0 1 2 3( , , , ,)      

0 11 22 33

32 23
1

11 22 33

13 31
2

11 22 33

21 12
3

11 22 33

1
1

2

2 1

2 1

2 1

a a a

a a

a a a

a a

a a a

a a

a a a









   




  




  




  

. (3.34) 

And the inverse transform [12] 

2 2

0 1 1 2 0 3 1 3 0 2

2 2

1 2 0 3 0 2 2 3 0 1

2 2

1 3 0 2 2 3 0 1 0 3

2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

2( ) 2( ) 2( ) 1

A

         

         

         

    
 

     
     

. (3.35) 

The quaternion can be considered as the rotation operator of the coordinate system, since 

there is a one-to-one correspondence between the quaternion and the rotation matrix. 

However, not every matrix of guiding cosines can be correctly transformed into Rodrigo-

Hamilton parameters and vice versa. For example, the left three vectors (V1,V2,V3) are not aligned 
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with the right coordinate system. The transformation into the parameters of Rodrigo-Hamilton and 

back leads to the fact that the matrix before the transformation and after the transformation do not 

coincide. When the algorithm the main axis of inertia calculation (§ 2.1), chose the left three vectors 

(I1, I2, I3), the program swaps the two vectors and the corresponding values of the components of the 

moments of inertia. 

It should be noted another difference between the rotation matrix (3.35) obtained through the 

Rodrigo-Hamilton parameters, and the rotation matrix (3.31) constructed from trigonometric 

functions. If you rotate the model for each time step, the program generates a recursive algorithm of 

the form X
(i+1)

=A•X
(i)

, where A is the rotation matrix, X is the radius vector of coordinates of the 

model points. 

The rotation matrix, composed of trigonometric functions, contains the alternating sign of 

the error, which does not lead to the accumulation of geometric distortions of the rotating model. In 

the case of the rotation matrix composed through the Rodrigo-Hamilton parameters, the recursive 

algorithm cannot be used, because it accumulates an error, as a result of which the model is 

deformed.  

To avoid deformation of the model, the program stores the original image of the molecule 

with X
(init)

 coordinates, deployed so that the main axes of inertia coincide with the axes of the world 

coordinate system. The rotation transformation is performed by the matrix guides of the cosines of A 
( )

0( )initX A X X  , (3.36) 

X0 - the coordinate vector of the center of mass of the molecule. 

The reverse turn pulls the molecule out of the “storage” indicated by the index (init) and 

places the molecule in the same position where it was. This rotation is performed by the transposed 

matrix A, which is calculated by the quaternion parameters (3.35), and the quaternion initialization is 

performed by the formulas (3.34), 
(init)

0

TX A X X  . (3.37) 

No need to store of the inertia tensor main axes, the quaternion matrix A is the matrix 

composed of the guiding cosines of the inertia tensor principal axes. 

The rotation matrix must meet the following rules [11] the determinant of the rotation matrix 

is unit, the axis of rotation is the eigenvector of the rotation matrix, the eigenvector corresponds to 

the eigenvalue is 1. 

At very large calculation times, the rotation matrix becomes a weak point of the program code, 

because it is repeatedly recalculated through the values obtained in the previous step, which leads to 

the accumulation of an error. For example, heating 58 helium atoms (Fig. 5.2), the total calculation 

time was 1500 pS, with a time step of 0.001×10 fS=10
-14

 S, 150×10
6
 multiplications of the rotation 

matrix were performed. The quaternion norm conservation problem described in [11]. 

The ‘Debug’ tab in the molecule editor provides the 'Rotation Matrix Check’ button, which 

checks the matrix of guiding cosines according to the following formulas [11]. 

By the elements of the matrix A (3.53) the guiding cosines of the eigenvector (e1, e2, e3) are 

calculated, which is the solution of the eigenvector problem and eigenvalues of the matrix A 

 
23 32

1

11 22 334 1

a a
e

a a a




   
, 

 
31 13

2

11 22 334 1

a a
e

a a a




   
, 
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 
12 21

3

11 22 334 1

a a
e

a a a




   
. 

The eigenvector e = (e1, e2, e3) found as a result of multiplication by the rotation matrix should 

remain unchanged A e = e, which can be seen in the last two lines of the ‘Rotation Matrix Check’ 

dialog: 

Eigenvector of matrix A: e = (0.052518,  -0.058722,  0.258164) 

Check, A*e = (0.052517,  -0.058722,  0.258162) 
 

As soon as the quaternion (3.34) 
0 1 2 3( , , , )      begins to depend on time, the molecule 

“comes to life”, turn (3.37) pulls the molecule out of position (init) and puts it in a new position, 

which is determined by the quaternion value and the corresponding value of the rotation matrix. 

 

3.7 Dynamics of rotation 

The basic equation describing the rotational dynamics of a solid body is the equation of 

momentum conservation   

dL
M

dt
 , (3.38) 

where, L is the moment of impulse (kinetic moment), M is the moment of forces. The equation 

(3.38) is a direct consequence of Newton's second law [13, §56] and it is true in any inertial frame of 

reference. 

The momentum L is the product of the inertia tensor I on the angular velocity vector . 

L I . (3.39) 

All you need to do is differentiate the product of the inertia tensor by the instantaneous value 

of the angular velocity vector. In the projection on the coordinate axes of WCS, we have 

x xx x xy y xz z

y xy x yy y yz z

z xz x yz y zz z

L I I I

L I I I

L I I I

  

  

  

  

  

  

. (3.40) 

However, in such a record, not only the angular velocity components depend on time, but 

also the components of the inertia tensor. The standard approach is to describe the rotation in a 

coordinate system rigidly connected to the rotating body - the coordinate system of the object. In 

this case, the inertia tensor is a constant value and taken out as a derivative. 

Let the coordinate system rigidly connected to the rotating body at each moment of time is 

transformed from the world coordinate system (X1,Y1,Z1) to the coordinate system (X3,Y3,Z3) by a 

sequence of rotations to the Euler angles (Fig. 3.5). Find the angular velocities relative to the axes 

(X3,Y3,Z3), considering the known angular velocities , ,   . 

If   - the angular velocity at which the coordinate system rotates (X1,Y1,Z1) (the first 

rotation in Fig. 3.5), the angular velocity must be transformed because the coordinate system is 

subjected to two more rotations. The problem of conversion of angular velocities is solved 

sequentially for each of the rotations at an infinitely small angle in [14, §382]. As a result, the 

kinematic Euler equations are obtained 
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3

3

3

sin sin cos

cos sin sin

cos

X

Y

Z

     

     

   

 

 

 

. (3.41) 

Dynamic Euler equations are derived from the law of conservation of momentum (3.38) 

[13, §89] and recorded for angular velocities and moments of forces in the coordinate system 

(X3,Y3,Z3). 

3
3 3 3 3 3 3

3
3 3 3 3 3 3

3
3 3 3 3 3 3

(I I )

(I I )

(I I )

X
X Y Z Z Y X

Y
Y Z X X Z Y

Z
Z Y X Y X Z

d
I M

dt

d
I M

dt

d
I M

dt


 


 


 

  

  

  

. (3.42) 

The kinematic Euler equations (3.41) are not obligate. The dynamic Euler equations relate 

the projections of angular velocities on the axis of the OCS and explicitly do not require knowledge 

of the current value of the angles. The current angle values may or may not be included in the 

moment expressions. In any case, if we want to consistently draw the position of the body, we need 

to recalculate the projections of angular velocities in the increment of angles, for this we can use the 

kinematic Euler equations resolved with respect to derivatives [15] 

 3 3

3 3

3 3 3

1
sin( ) cos( )

sin( )

cos( ) sin( )

( sin( ) cos( ))ctg( )

X Y

X Y

Z X Y

    


    

      

   

   

    

. 
(3.43) 

In the same monograph [15] talk about especially with small angles of nutation . The 

integration of these equations leads to a completely non-physical behavior, at low angular velocities, 

the molecule, being with a small angle β, suddenly tumbles 180º 

 The problem of solving the kinematic Euler equations are devoted specific articles [16, 17]. 

A productive approach to the solution of the kinematic Euler equations is the transition to the 

Rodrigo-Hamilton variables, which can be considered as a replacement of variables, leading to the 

linearization of the equations (3.41), as a result, the kinematic equations acquire the following form 

[11] 

 

 

 

 

0 3 1 3 2 3 3

1 3 0 3 2 3 3

2 3 0 3 3 3 1

3 3 0 3 1 3 2

1

2

1

2

1

2

1

2

X Y Z

X Z Y

Y X Z

Z Y X

      

      

      

      

   

  

  

  

. (3.44) 

Quaternion is an absolute synonym of the rotation matrix, since there is a one-to-one 

transformation (3.34), (3.35) between them. 

In §3.6 we came to the conclusion that it is advisable to store the molecule in some “storage” 

where we put it, performing a rotation defined by the matrix of the guide cosines A. Next, it is 
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necessary to pull the molecule out of storage and place it in its former place in the WCS, this can be 

done using the A
T
 matrix. For such a matrix it is possible to construct a quaternion through 

transformation (3.34). The resulting quaternion we set as the initial value for the kinetic equation. 

Then, at time t = 0, the quaternion and its corresponding rotation matrix will provide the necessary 

rotation from the “storage” to the initial position in the WCS.  

Now, it is time to solve the Euler equations (3.42), which will give us the values of angular 

velocities relative to the axes of the OCS (X3,Y3,Z3). Substitute angular velocities into kinetic 

equations (3.44) and obtain the quaternion increment due to the rotation for the time dt. The new 

value of the quaternion gives us the rotation matrix (3.35), which will take a molecule from the 

repository to the new location. 

Unfortunately, that's not all. To solve the kinetic equation (3.42) it is necessary to calculate the 

forces, and to organize the correct transformation of the moments of forces from WCS to OCS.  

Since the atomic coordinates and force fields are described in WCS, forces and moments are 

considered easy as described in §3.4. For the solution of dynamic Euler equations need only the 

moments of the forces calculated in WCS moment of the force vector is converted to OCS using the 

matrix guides of the cosines of A (3.35).  

We check the dimensions for the dynamic Euler equations (3.42). Returning to §3.1, we will, 

as before, measure the angular velocity in radians for 10 femtoseconds and rewriting the 

transformation (3.6) for the ratio of the moment of force to the moment of inertia, we obtain 

14

( ) ( )
10

10rad rad

S fs

   ,             

14

( ) ( )( )
10 10 28

14

( ) (10 ) ( ) (10 )
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10
( 10 )

rad radrad

fs fsS

S fS S fS

d dd

dt d t dt

 





  


, 

 

   2

( ) 9 10 ( )
( ) ( )( )

( )(N m) ( ) ( ) 28

2 227 10
( ) ( )( ) ( ) ( )( ) ( )

1,6021 10 10

0,9653 10
1,6597 10 10

eV eV
A Am

A N A

amu AKg m amu AKg m

U U
x x

xM x

I m xm x

 



 


  
       

   
   

. 

(3.45) 

Multiplier 10
28

 is reduced, and the coefficient 0.9653 remained before the ratio of the 

moment of force to the moment of inertia. 

3 3 3 3
3 3

3 3

(I I )
0,9653X X Z Y

Y Z

X X

d M

dt I I


 


   . (3.46) 

The last equation shows the total moment of the MX3 forces acting on the molecule in the 

OCS. The coordinates of all atoms are stored in the WCS, the moment of force relative to the center 

of mass of the molecule is calculated by the formula (3.17), performing the summation of all atoms, 

we obtain 

0 ,[( ) ]i i j

i j

M r r F


   , (3.47) 

ri - the radius-vector of the i-th atom, r0 is the radius-vector of center of mass of the molecules, Fi,j is 

the force acting on atom i from atom j. The obtained moment of forces vector M wrote on the 

projection on the WCS orts. Let's find the vector M projections on the OCS orts. 

The OCS orts, are vectors (a11, a12, a13), (a21, a22, a23), (a31, a32, a33), let the desired vector, 

recorded in the projection on the OCS orts, has coordinates (MX3, MY3, MZ3), then  

11 12 13 X3 21 22 23 Y3 31 32 33 Z3 X Y Z( , , ) ( , , ) ( , , ) ( , , )a a a M a a a M a a a M M M M   , (3.48) 

or matrix form  
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11 21 31 3

12 22 32 3

13 23 33 3

X X

Y Y

Z Z

M a a a M

M a a a M

M a a a M

    
    

    
    
    

. (3.49) 

Multiplying on the left by a matrix A, we get 

3

TA M A A M    , (3.50) 

or  

3M A M  . (3.51) 

We write a sequence of calculations that perform rotation transformations. 

1 

11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 

  
 
 

,  X,  X0 

The source data is 

generated when the 

molecules are created in 

the editor or when the 

previously saved data is 

loaded; 

(3.52) 

2 ( )

0( )initX A X X   

Remember the coordinates 

of atoms in the “storage”; 

A - matrix of guiding 

cosines; 

3 

0

0 11 22 33

0 32 23
1

11 22 33

0 13 31
2

11 22 33

0 21 12
3

11 22 33

1
1

2

2 1

2 1

2 1

a a a

a a

a a a

a a

a a a

a a

a a a









   




  




  




  

 

Perform the initialization 

of the Rodrigo-Hamilton 

parameters, which 

corresponds to the current 

orientation of the 

molecules and is 

completely determined by 

the matrix A; 

4 ,

,

[ ]i i j

i j

M r F   

Calculate the forces acting 

on each atom and the 

moment of forces acting 

on the molecule in WCS; 

5 
3M A M   

Find the projection of the 

moment vector of forces 

on the WCS orts; 

6 

0 03 3 3 3
3 3

3 3

0 03 3 3 3
3 3

3 3

0 03 3 3 3
3 3

3 3

(I I )
0,9653

(I I )
0,9653

(I I )
0,9653

X X Z Y
Y Z

X X

Y Y X Z
Z X

Y Y

Z Z Y X
Y X

Z Z

d M

dt I I

d M

dt I I

d M

dt I I








 


 


 


  


  


  

 

Solve the dynamic Euler 

equations by numerical 

method; 
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7 0 0 0

3 3 3 3 3 3X X Y Y Z Z

           
Remember the new initial 

conditions for the next 

step; 

8 

 

 

 

 

0 0 0

0 3 1 3 2 3 3

0 0 0

1 3 0 3 2 3 3

0 0 0

2 3 0 3 3 3 1

0 0 0

3 3 0 3 1 3 2

1

2

1

2

1

2

1

2

X Y Z

X Z Y

Y X Z

Z Y X









      

      

      

      

   

  

  

  

 

Solve kinematic Euler 

equations by numerical 

method; 

9 0 0 0 0

0 0 1 1 2 2 3 3

               
Remember the new initial 

conditions for the next 

step; 

10 

2 2

0 1 1 2 0 3 1 3 0 2

2 2

1 2 0 3 0 2 2 3 0 1

2 2

1 3 0 2 2 3 0 1 0 3

2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

2( ) 2( ) 2( ) 1

A

         

         

         

    
 

     
     

 

Calculate the rotation 

matrix (the matrix of 

guiding cosines); 

11 (init)

0

TX A X X   
Perform the rotation of all 

atoms for each molecule. 

12 Back to position 3  

 

3.8 Runge-Kutta methods 

Program uses two fourth-order Runge-Kutta methods for first-order differential equations 

(systems (3.42) and (3.44)) and for second-order differential equations (3.4). 

For first-order differential equations, the Runge-Kutta method has the form 

1

2 1

3 2

4 3

( , )

( , k )
2 2

( , k )
2 2

( , k )

k F t x

h h
k F t x

h h
k F t x

k F t h x h



  

  

  

 

 1 2 3 4( ) ( ) 2 2
6

h
x t h x t k k k k      , 

(3.53) 

where F(t, x) – is the right part of the differential equation solved with respect to the derivative. 

To testing the Runge-Kutta Method for first-order differential equations performed for the 

calculation scheme (3.53), which performs free rotation of a water molecule with the following 

parameters: the main values of the inertia tensor IX=1.810, IY=0.666, IZ=1.144, the initial velocities 

X = 0.0, Y = 0.00001, Z = 0.1, the initial values of the quaternion are 0 = 0.733663, 1 = -

0.087161, 2 = -0.035699, 3 = -0.672954. The solution was built in Maple and MolRun; the 

comparison result is shown in Fig. 3.6, where, the solid curve shows the solution obtained by Maple, 

the dots show the solution obtained by MolRun. 
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The obtained solutions reproduce the dynamic effect known as the “Dzhanibekov effect” - 

periodic somersault, of a body with an asymmetric inertia tensor. The first figure shows the 

dynamics of the quaternion parameter (0), which reflects the free rotation of the molecule. The 

second figure shows the dynamics of angular velocities, it can be seen that despite the very small 

initial value of the angular velocity Y = 10
-5

, this perturbation is enough to the angular velocity Z 

at a certain moment reversed the sign. 

 

  
Fig. 3.6  Simulation results comparison of water molecules free rotation, the solid curve is the 

solution obtained by the program MolRun, point – solution obtained by the Maple program. 

Dzhanibekov effect simulating hides an important feature - in the case of free rotation, the 

right-hand sides of F(t, x) are independent of angles. In the general case, the moment of force 

depends on the body orientation, and when the molecules collide, the moment of force very much 

depends on the angles, while the calculation of the forces at the half-step of the Runge-Kutta method 

becomes very important. For this reason, it is necessary to verify the numerical implementation of 

the method for the case of a nonzero moment of forces. The result of comparing the calculations in 

the MolRun program and the modeling in the Maple package for the case of a constant moment of 

force Mx = 10
-5

 My = 0,
 
Mz = 0, is shown in Fig. 3.7. 

Runge-Kutta method testing for second-order differential equations was performed for the 

following model. Let there be two Ne atoms, with the parameters of the interaction potential 

 = 0.03067,  = 5.1, rm = 3.086, m = 20.183. To make the atoms move, we place them at the 

coordinates (0,0,-2) and (0,0,2), so the distance between atoms is 4 angstroms and assign fictitious 

charges +0.1 and -0.1 C. Particles will begin to attract each other until they “collide” with the 

interaction potentials. 

Due to the symmetry of the problem, we will consider the coordinate of one atom z = 2.0. The 

Coulomb interaction acts in the direction of decreasing the coordinate of this atom, which means 

that the minus sign should be assigned to the force, the van der Waals force at a distance of 4 

angstroms also acts in the direction of decreasing the coordinate, which means it also enters into the 

equation of motion with a minus sign, total, we have the equation of motion 
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. 
(3.54) 

The results are obtained using the following formulas that give a solution to a second-order 

differential equation 
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

 

  

  

, 

 

 

1 2 3

1 2 3 4

1

6

1
2 2

6

n n

n
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    
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(3.55) 

The variables xn, vn should be understood as vectors in the WCS; F is the total force applied to 

the center of mass of the molecule. 

The calculation results in Maple and MolRun are shown in Fig. 3.8. 

  

Fig. 3.7 The quaternion component 0 under the 

action of an external moment Mx = 0.00001 

Fig. 3.8 The distance between the atoms (red 

line), speed (blue line). 
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3.9 The energy calculation 

Energies of atomic scale are represented in a variety of units. 

J/mol is a joule divided by the Avogadro number, that is, just a unit of energy transferred to 

the atomic scale. Convert this unit to electron volts 

 18

( ) 5

23

6.24 10
1 1.04 10

6 10

eVJ
eV

mol




  


.  

A similar situation with the unit cal/mol, translate it into electron volts 

 18

( ) 5

23

4.184 6.24 10
1 4.35 10

6 10

eVcal
eV

mol


 

  


.  

The atomic unit of energy (atomic unit), it is Hartree, is 27.211 eV. 

To transfer the energy unit to the atomic scale, you can choose another divisor other than the 

Avogadro number, you can use the Boltzmann constant as such a divider, then the energy scale will 

be expressed in Kelvin. However, 1 Joule is too large a macroscopic value, therefore, we can 

express it in units of temperature 1 eV. First we translate the Boltzmann constant into units eV/K 
23 19 51.38 10 0.625 10 8,62 10 /eV K      .  

Now, divide 1 eV by the Boltzmann constant, expressed in eV/K 

 
(eV) 4

5

( /K)

1
1.159 10

8.625 10
eV

K
k




 
     

.  

To exclude doubts whether the factor depending on the number of degrees of freedom was 

lost during the conversion, we turn to [18, p.5] where it is indicated that the monograph uses the 

equality 1 eV = 1.1x10
4
 K.  

The program calculates the value of kinetic energy 

 2 2 2

( ) ( /10 ) ( /10 ) ( /10 )

1

2
k amu x A fs y A fs z A fsE m       , (3.56) 

which can be converted to joules 

     
2

27 4 2 19

( ) ( /10 ) ( ) ( /10 )(Kg) ( / ) (J)
1,6597 10 10 1,6597 10amu A fs amu A fsm s

m m          . (3.57) 

If we recall that 1 eV = 1,602x10-19 J, then we get 

 2

( ) ( /10 ) (eV)
1,036amu A fsm   . (3.58) 

We do the same with the kinetic energy of rotational degrees of freedom 

 2 2 2

2 2 2

( /10 ) ( /10 ) ( /10 )( ) ( ) ( )

1

2
r rad fs rad fs rad fsxx amu A yy amu A zz amu A

E I I I    
  

      . (3.59) 

Let us reduce the dimensions of the moment of inertia and angular velocity to the SI units 

     
2 2

27 10 14

( ) ( ) ( /10 )( ) ( ) ( / )
1.6597 10 10 10amu A rad fsKg m rad S

m x        = 

=  2

2 19

( /10 )( ) ( )
1.6597 10rad fsamu A J

I  


   . 

(3.60) 

We got exactly the same conversion factor as for kinetic energy (3.57), which means that we 

hadn't been mistaken. 
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The potential energy of particles systems is considered as the sum of the potentials of all pair 

interactions. 

(r r )p i j

i j

E U


  . (3.61) 

The potential energy U(r) is the sum of the interaction energy of a pair of atoms (2.16) and 

the energy of the Coulomb interaction if charges are assigned to atoms. There are no questions with 

formula (2.16); it gives the value of the interaction energy in units of eV. 

For a pair of charges, the force was calculated in § 3.2 as 

( ) ( ) ( )

2

( ) ( )

14,3993
eV e e

A A

U q q

x x


 


. (3.62) 

Then 

( ) ( ) ( ) ( )

( ) 02

( ) ( )

( ) 14,3993 14,3993

x
e e e e

eV

A A

q q q q
U x dx U

x x


   . (3.63) 

 

3.10 The temperature calculation 

The basic expression for the relationship between temperature and energy is the ratio [8] 

1

2
b Ik T E . (3.64) 

By energy <EI> we mean kinetic energy per one degree of freedom of one particle. If, in 

addition to translational degrees of freedom, rotational degrees of freedom are present, the total 

kinetic energy of N particles will be evenly distributed over all available three or six degrees of 

freedom 

3 6

2
k r b

or
E E Nk T  . (3.65) 

If the right-hand side of (3.65) can be left as is in the program code, in the absence of 

rotational degrees of freedom the corresponding contribution to energy will be zero, then the choice 

of the coefficient (3 or 6) is assigned to the user, the check “Rotation Energy (6N)” on the Physics 

tab Workspace windows. 

Expressions (3.57), (3.60) give a representation of the kinetic energy in joules, whence we 

obtain the expression for the temperature in Kelvin. 

 19

(eV) ( ) (eV)

( )

2 1.602 10
23209.03605

(3 6) (3 6)

k r k rJ

K

b

E E E E
T

or Nk or N

   
   . (3.66) 

This is the “kinetic" temperature [19, p. 198], which, generally speaking, was defined in 

kinetic theory for the state of thermodynamic equilibrium. 

 

3.11 The density calculation 

For the gas phase, the density is calculated for a cube with an edge CL, if a surface bounding a 

molecule or cluster is constructed, the density is calculated for a volume bounded by the surface. 



30 

 

 

 
3

3 3
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( )( ) ( ) ( )

3 3(kg/m ) 10
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1659,7
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





   
     

  

 (3.67) 

or 

 

  3
3

3

3

( ) (kg) ( ) 3

6
(c )(c ) (m )

10
10

10

g g

mm

m m

VV




 


. (3.68) 

  

3.12 The dipole moment calculation 

The dipole moment of the molecule is not involved in the solution of the equations of motion, 

so as not to waste processor time, the rotation of the vector of the dipole moment is not recounted at 

each step, but is calculated at time intervals ‘Save To Analysis’. The operation of rotating the vector 

by an angle, which is determined by the composition of the turns, is much more complicated than 

directly calculating the vector of dipole moment, therefore, if ‘Dipole Moment Analysis’ is checked, 

the program calculates the dipole moment of each molecule using the classical formula 

   
 

10 19

(A) (e)(m) (C)

(С m) (A) (e)30 ( )

10 1,6021 10
4,79

3,34 10
i i D

i

r q
rq r q

 

 

  
   


   , (3.69) 

The result of the calculations is presented in Debye. 

 

3.13 The volume calculation 

Suppose there is a distribution of atoms, you need to cover it with an elastic surface and 

calculate the internal volume bounded by this surface. Let the problem of finding atoms located on 

the outer layer be solved. 

Let assume the distribution center of mass located inside the volume bounded by the outer 

layer of atoms. Let’s find the distribution center of mass, take it as the beginning of a spherical 

coordinate system and transform the outer layer atoms Cartesian coordinates to spherical ones. 

2 2 2

2

arccos

atan

r x y z

z

r

y

x





  

 
  

 

 
  

 

 
(3.70) 

Here the standard function atan2(y, x) is used, which works taking into account the signs of 

the arguments and returns the angle in the range –.... The inverse transformation from a spherical 

system to a Cartesian one works correctly in the entire range of angles and has the form 

2 2

cos( )

cos( )

sin( )

z r

l r z

x l

y l









 





. (3.71) 
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It would be tempting to construct a surface as a sum of generating functions F that provide 

the necessary distance from the distribution center to the atom located point. As we move away from 

the point where the atom located, the function decreases 

( , ) ( , , , )i i iR A F      . (3.72) 

The function R must satisfy the following conditions. At the atom location angular 

coordinates (i, i), the function returns the specified distance from the origin 

( , )i i ir R  
.
 (3.73) 

Since the coordinate  must define a closed curve, it is necessary to additionally require 

( , ) ( , )i iR R     . (3.74) 

The first condition leads to a system of linear algebraic equations with respect to unknown 

coefficients Ai  

1 1,1 1, 1

,1 ,

...

... ... ... ... ...

...

n

n n n n n

r F F A

r F F A

    
    

     
    
    

. (3.75) 

The condition (3.74) in the model (3.72) cannot be fulfilled, which leads to a gap at the 

surface closure, but does not prevent an estimate of the volume. Since, by the condition, the 

generating functions decrease as they move away from the location of the atom, we can expect that 

the matrix F will contain many values close to zero. To solve System of linear equations with such 

matrices, the Gauss method is used with the selection of the largest element [20], which is 

implemented in the program.  

Functions of the following type were studied as generating functions: 

 

2 21 ( ) ( )

i

i i

A
R

   


   
 , (3.76) 

2 21 ( ) ( )

i

i i

A
R

   


   
 . (3.77) 

 

The selection of the generating function (3.76) or (3.77) is made by the 

‘Workspace\Volume\Function check mark’. The surfaces constructed by generating functions 

(3.76), (3.77) are shown in Fig. 3.9-3.11, where V0 denotes a volume equal to the sum of the 

volumes of spheres given by atomic radii, which is taken as 100%, the volume limited by the 

constructed surfaces is denoted as V1 and V2 for different models. 

2 21 ( ) ( )

i

i i

A
R

   


   
  

2 21 ( ) ( )
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i i

A
R

   


   
  
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V0=7,9 Å
3
;
 
 V2=9,4 Å

3
 (+18%)  V0=7,9 Å

3
; V1=9,3 Å

3
 (+17%) 

Fig. 3.9 Approximating surface for an ammonia molecule (a gap in the place of crosslinking is 

highlighted in red =- A grid of 25x25 elements. 

 

  

V0=105,5 Å
3
; V2=490,9 Å

3
 (+365%)  V0=105,5 Å

3
; V1=565,4 Å

3
 (+435%) 

Fig. 3.10 The approximating surface for the ATP molecule, a grid of 100x100 elements, the 

crosslinking area is shown by a gap. 

  

V0=33,3 Å
3
; V2=69,5 Å

3
 (+109%)  V0=33,3 Å

3
; V1=69,9 Å

3
 (+110%) 

Fig. 3.11 The approximating surface for the butane molecule, a grid of 100x100 elements, the 

crosslinking area is shown by a gap. 
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To calculate the volume, the same grid is used as for surface visualization. The volume bounded 

by the surface (3.72) is calculated as the sum of trapezoids with vertices in the center of mass of the 

distribution of atoms 

 

1 1 1

2 2 2

3 3 3

x y z

V x y z

x y z


 , (3.78) 

where (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) are the Cartesian coordinates of the triangle, the point (0, 

0, 0) is the center of mass, straight brackets denote the modulus of the determinant. 

To locate the atoms forming the outer layer of a molecule or a cluster following algorithm are 

used. The procedure takes a list of atoms to be processed, calculates the center of mass coordinates, 

taking atoms mass as single. Next, the angular coordinates of the pair of tested atoms are calculated 

(1, 1), (2, 2), and the angular dimensions of the tested atoms are calculated. 

 1
1

1

s

R
E arctg

r


 
   

 
, 2

2

2

s

R
E arctg

r


 
   

 
, (3.79) 

where R is the radius of the atom, r is the distance from the center of mass to the atom, Es is the 

parameter that determines the sensitivity of the internal atom search procedure. The Es parameter is 

editable on the Workspace\Volume tab\Atom list\External atoms sensitivity parameter. Next, the 

angular dimensions of a pair of atoms are compared. If the intervals of angular coordinates 

 1 1 1 1,      и  2 2 2 2,      

 1 1 1 1,      и  2 2 2 2,      
(3.80) 

overlap at the corners , , then an atom with a smaller distance r is removed from the compared 

pair of atoms. In order for the result of the procedure to be visible on the screen, it is necessary to set 

the ‘Workspace\Volume mark\Atom list\Fade’ internal atoms, then the deleted atoms will be 

displayed in white. This function is not reversible, since it replaces colors in the main data array of 

molecules. 

A smooth surface looks nice, but it requires a lot of computing resources, so it is not suitable 

for tasks where the volume needs to be calculated continuously. There is a fast algorithm Convex 

Hull [20] that wraps a point cloud with a surface constructed from plane elements. This algorithm is 

implemented in the program and is enabled by the ‘Workspace\Volume\Surface\Convex Hull’ check 

mark. In the three-dimensional case, the algorithm is cumbersome and has no relation to the of the 

simulated process’s physics, so the description of the software implementation is not given here. For 

comparison, the volumes of molecules calculated using the Convex Hull algorithm are shown 

below. The volume bounded by the surface is calculated as the sum of the volumes of tetrahedra 

with a common vertex. 

The Convex Hull algorithm implemented in the program was conceived to calculate the 

volume of a collective of molecules, therefore, the centers of atoms are chosen as surface 

constructed points, which leads to underestimated volume values if the volume of a single molecule 

is calculated. 
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V0=105,5 Å

3
; V3=184,2 Å

3
 (+75%) V0=33,3 Å

3
; V3=14,4 Å

3
 (-56%) 

(a) (b) 

Fig. 3.12. The approximating surface constructed by the Convex Hull algorithm for the ATP 

molecule (a), for the butane molecule (b). 

 

3.14 The pressure calculation 

To calculate the pressure, the Clausius virial  is used, which is described in detail in 

 [22, 23],  

1

1
( )

2

N

i xi i yi i zi

i

x F y F z F


    
. 

(3.81) 

A certain (3.81) virial satisfies the equality 

kE  .
 

(3.82) 

Since the virial is defined through forces, it becomes possible to isolate pressure as the flow of a 

force field along the outer surface bounding the particle cluster. The force acting on the molecule is 

divided into the force acting on the outer surface and the forces acting on the other N-1 particles. 

Thus, the virial splits into three virials total virial, external virial (wall virial), internal virial 
tot ext int   . (3.83) 

Which ultimately leads to the formula [23, p.144, formula (8.26)]   

(int)1

3
Б i i

i

PV Nk T r F   . (3.84) 

The virial has the dimension of energy, but is not as familiar a physical quantity as speed or 

energy. To deal with the sign of the virial term, we will write the virial sum for all particles through 

the sum of interacting pairs of particles. The easiest way to do this is by describing the interaction 

for three particles. There are only two forces acting on each of the particles 

     
3

12 13 1 21 23 2 31 32 3

1

k k

k

F r F F r F F r F F r


      . (3.85) 

Group the members 

12 1 21 2 13 1 31 3 23 2 32 3F r F r F r F r F r F r     , (3.86) 

using Newton's third law, for pairs of forces, we can write 
12 21F F  , where from 
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     
3

12 1 2 13 1 3 23 2 3

1

( )i j ij

i i j

F r r F r r F r r r r F
 

       . (3.87) 

Returning to (3.84) we get 

(int)

1

1
( )

3

N

Б i j ij

i i j

PV Nk T r r F
 

   . (3.88) 

It remains to rewrite (3.88) in program units, denoting units of measurement in the lower index 

(see (3.1)) 

   
   3
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(3.89) 

or 
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 (3.90) 

or 
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(3.91) 

Let's illustrate the contribution of the virial member to pressure by an elementary example. 

Consider the behavior of two Ne atoms with charges of different signs located on the same axis. At 

the zero moment of time, the particles are at rest, starting to move towards each other under the 

influence of Coulomb attraction. In this case, the virial has a positive value. Then, the repulsive 

forces exceed the attractive forces, at this point we have a maximum of kinetic energy and the virial 

becomes negative. After the collision, the particles fly apart until the forces of attraction stop them. 

 

Fig. 3.13 Virial , kinetic energy Ek, potential energy Ep for a pair of colliding Ne atoms with 

charges of different signs located on the same axis. 

Fig. 3.13 shows a graph of kinetic Ek and potential Ep energy, their average values (dotted lines), 

which are calculated over the oscillation period, and the value of the Clausius virial entering (3.88).  

The average value of the virial is shown by a black straight line, which practically coincides with 
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the red dotted line - the average kinetic energy, that is, the virial theorem (3.82) is fulfilled.  

Fig. 3.13 also makes it clear that the time scale on which the instantaneous values of the virial 

must be calculated should be at least less than the time at which the velocity reversal occurs during 

the collision of particles.  

Let's return to the formula (3.88), the value  shown in Fig. 3.11 and the virial sum included in 

(3.88) have different signs, which means that as long as the particles are mostly in the region of 

mutual attraction, the virial term will give a minus sign contribution to the total pressure (3.88), 

when the particles are mostly compressed to the ‘repulsion’ region, Fig. 3.13, the virial sum will 

give a plus sign contribution to the total pressure of the system. 

 

   

https://translate.google.ru/
https://translate.google.ru/
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4 Program Management 

4.1 Screen projection 

To display the three-dimensional world described in the world coordinate system, a procedure is 

required that displays the coordinates of the WCS on the coordinates of the screen plane. The most 

universal method is projected onto a plane having an arbitrary position in space. This method allows 

to freely fly in the space of WCSs and observe the picture from any point and from any angle. 

Let the vector V0, describes the position of the observer, the vector V1 describes the direction 

of view, the vectors V2, V3, specify the unit vectors of the axes on which the plane of the screen 

projection is stretched. Q is the vector defining the point of the central projection, P is the coordinate 

of the point for which it is necessary to construct the central projection (Fig. 4.1). All vectors are 

given in the coordinates of the WCS (X, Y, Z). 

 

Fig. 4.1 World coordinate system (X, Y, Z) and the screen projection plane (V2, V3). 

Let's start with the simplest, move the projection plane away from the point V0, where the 

observer is located. Step back to the distance h, in the direction of the vector -V1 

VS0 = V0 – V1·h. (4.1) 

A straight line passing through the center of the projection will pierce the projection plane at 

point G. Let's construct the equation of the PG line in parametric form. To get the vector PG, you 

need to subtract the vector P from the vector G, multiplying this vector by the parameter, we get a 

set of points belonging to the line PG 

G = V0 + ·(G - P). (4.2) 

 

Now let's build the projection plane. The equation of the plane can be obtained by requiring 

that the vector perpendicular to vectors V2, V3 has zero length 

0 0 0

2 2 2

3 3 3

0

x y z

x y z

x y z

x V y V z V

V V V

V V V

  

 .  (4.3) 

Let’s rewrite the equation of the plane in the form 

0 0x y zK x K y K z K    , (4.4) 

then, from (4.3) and (4.4) 
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2 2 2 22 2

0 0 0 0

3 3 3 33 3

y z x yx z

x y z x x y y z z

y z x yx z

V V V VV V
K K K K K V K V K V

V V V VV V
       . (4.5) 

Note that it is easy to shift the constructed plane to the point V0, for this it is enough to 

change the free term in equation (4.4) 

0 0 0 0(V L ) ( L ) ( L ) K 0x x x y y y z z zK K V K V         , (4.6) 

The plane to which the point V0 belongs divides space into two regions, if some test point 

belongs to the plane the equation with a free term (4.6) gives zero, if the point lies on one side of the 

plane the expression (4.4) with a free term (4.6) is greater than zero, on the other – less. Moreover, 

when the plane rotates, the areas do not change places. This is used to determine the visibility of 

objects, a condition of visible objects is
0 0x y zK x K y K z K    . 

It remains to find the intersection of the line and the plane. It is very fortunate that the line 

PG is given in the parametric form (4.2), we denote the vector L = V0 – P, and substitute the 

coordinates of the line in the equation of the plane (4.4) 

0 0 0 0(V L ) ( L ) ( L ) K 0x x x y y y z z zK K V K V         . (4.7) 

Expressing the parameter , we obtain 

0 0 0 0K

L L

x x y y z z

x x y y z z

K V K V K V

K L K K


  
 

 
. (4.8) 

Now the point G satisfies the equation of the line (4.2) and the equation of the plane (4.4). 

Find the coordinates of the point G in the basis given by the vectors V2, V3, that is, in the 

coordinates of the screen plane. The projection of a vector onto a line given by a vector is the scalar 

product of these vectors divided by the module of the vector defining the line. In our case, the last 

vector is normalized to unity, whence we get 

0 2 0 2 0 2(G )V ( ) ( )X x x x y y y z z zV V G V V G V V      , 

0 3 0 3 0 3(G ) ( ) ( )Y x x x y y y z z zV V V G V V G V V      . 
(4.8) 

The coordinates found are the screen coordinates of the point P projected from the WCS onto 

the screen plane. 

The coordinates in the projection plane are obtained using the central projection, which means 

that the laws of perspective work automatically, the parameter determining the reduction of distant 

objects is h, which defines the center of the projection. If the center of the projection is far removed 

from the plane of view, the central projection approaches to a parallel projection. 

 

4.2 Ray tracing 

Since the simulated world consists mainly of spheres, it is not difficult to implement the ray 

tracing method, at least in a simple form, without taking into account refraction and reflection. The 

program implements a method of reverse ray tracing (from the screen plane to objects) with an 

algorithm for calculating Lambert-Phong-Blinn illumination. 

Let the coordinates of the point of the screen plane be known VX,VY, construct a straight line 

passing through a point with coordinates VX,VY and the point of the central projection given by the 

vector V0 (Fig. 4.1). The coordinates of the first point will be set by the vector 

02 3X YG V V V V VS     . (4.10) 
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The equation of the desired line, let's call it a direction of view line, is convenient to represent 

in parametric form 

 0V V G G  
. 

(4.11) 

The equation of the intersection of a line (4.11) and a sphere of radius R representing an atom 

centered at a point with coordinates (x0, y0, z0) will take the form 

     
22 2 2

0 0 0 0 0 0( ) ( ) ( )x x x y y y z z zG V G x G V G y G V G z R              . (4.12) 

Let’s rewrite (4.12) in a simple way 

2 2 2 2 2 2 2 2( ) 2 ( ) 0x y z x x y y z z x y zb b b b a b a b a a a a R           , (4.13) 

where 
0x x xb V G 

, 0x xa G x 
, and the same way for y, z.

  

If the quadratic equation (4.13) has two solutions, we find the smallest parameter , which 

determines the nearest point of intersection of the direction of view line with the sphere. Denote the 

coordinates of the found intersection point (Px, Py, Pz). 

The normal to the surface of the sphere, is given by a straight line passing through a point on 

the sphere and the center of the sphere 

0x xn P x 
, 0y yn P y 

, 0z zn P z 
.
 (4.14) 

The direction of view is set by the guiding vector of the straight line (4.11) 

x ox xV V G  
, y oy yV V G  

, z oz zV V G  
. (4.15) 

After normalization of vectors (4.14), (4.15), the cosine of the angle between them is found 

cos( ) x x y y z zn V n V n V     (4.16) 

Next, a vector is calculated, known as the ‘halfway’ vector, which is the difference between the 

direction of view vector and the vector L  defining the light source. 

 
x x xН V L 

, y y yН V L 
, z z zН V L 

.
 (4.17) 

After normalization of the vector, the cosine of the angle between the vector H  and the normal to 

the surface is considered 

cos( ) x x y y z zH n H n H n     (4.18) 

Now there are all the necessary values to determine the color components (CRED, CGREEN, 

CBLUE) for a pixel with coordinates VX,VY 

 7255 ( cos( ) ) cos( )RED RED DIFFUSE STRAY REFLECTC S K K K    
, 

 7255 ( cos( ) ) cos( )GREEN GREEN DIFFUSE STRAY REFLECTC S K K K    
, 

 7255 ( cos( ) ) cos( )BLUE BLUE DIFFUSE STRAY REFLECTC S K K K    
.
 

(4.19) 

The values SRED, SGREEN, SBLUE represent the color components of the surface of the sphere 

depicting the atom, which are editable on the ‘Atom’ tab of the ‘Edit’ window (Fig. 4.8). The 

exponent for cos() is responsible for the size of the glare, it is an empirical value prescribed in the 

program code. 

Ray tracing when constructing a surface bounding a group of atoms (§3.13) is performed for 

the elements of the plane, which are obtained by dividing the surface into triangles. A grid is 
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stretched on the surface with a uniform pitch along the angular variables. For each grid cell, a point 

is plotted in the center of the cell, which is a common point for the four triangles. For each of the 

four triangles, a ray tracing procedure is called, at the input of which there are coordinates of three 

points specified by vectors T1, T2, T3. Let the common point of all triangles be point T3. The vector 

specifying the direction of view for the four triangles is assumed to be the same and equal to V=T3-

V0.  

Let's construct two vectors V1=T2-T1, V2=T3-T1, which can be considered as the basis of the 

plane given by the points T1, T2, T3, then the normal to the plane is n=V1×V2. After normalization of 

the vectors, the cosine of the angle between the direction of view and the normal to the surface is 

calculated by the formula (4.16), then the ‘halfway’ vector and the cosine of the angle between the 

direction to the light source and the ‘halfway’ vector are calculated by the formulas (4.17), (4.18). 

Taking into account the transparency, the shading of the inner area of the triangle is calculated 

as 

 1 1 2RED TRANSPARENT RED TRANSPARENT REDC K C K C  
, 

 1 1 2GREEN TRANSPARENT GREEN TRANSPARENT GREENC K C K C  
, 

 1 1 2BLUE TRANSPARENT BLUE TRANSPARENT BLUEC K C K C  
,
 

(4.20) 

where C1RED, C1GREEN, C1BLUE are the color components of the plane element calculated by the 

formulas (4.19), C2RED, C2GREEN, C2BLUE are the color components of the drawn scene stored in the 

virtual screen memory, KTRANSPARENT is the transparency coefficient set on the ‘Workspace\Ray 

tracing’ form (Fig. 4.6). The calculation of the color components (4.21) is performed for each pixel, 

this requires using a fast-acting procedure for accessing the virtual screen, the program code uses 

access to the Bitmap array through direct access to memory (C code notation):  

ptr = (byte*)Bitmap->ScanLine[BmpMaxYd2-sm]. 

 

4.3 Program management 

The main screen (Fig. 4.2) is the result of constructing the central projection (4.8) for the all 

atoms. 

  

Fig. 4.2. The main program window. Fig. 4.3. The relative position of the projection 

plane and the cube. 

The free flight of the projection plane is carried out by the arrows and keys W, S, A, D, Q, E. 

The position of the projection plane with respect to the cube can be viewed in the ‘Parameters\Work 

Space’ window (Fig. 4.4). The possibility of free flight of the projection plane allows the loss of a 
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molecules from the field of view, if this happens, the ‘World’ window will help you find the 

molecules back. 

At the bottom right and top left of the main window (Fig. 4.2) there are navigation areas that 

change their appearance when you click on the central part of the navigators. The PgUp, PgDn keys 

allow you to sort through the molecules, the selected molecule can be edited. If you select the menu 

item ‘Edit’. In editing mode, all molecules except the selected one will disappear and the editor 

window will open. While editing the selected molecule, it remains possible to freely change the 

position of the projection plane in space. 

 

4.4 The ‘WorkSpace’ window 

The main parameters responsible for the calculation of the molecular ensemble dynamics are 

collected on the tabs of the ‘Work Space’ window. The window contains the tabs ‘Load’, ‘View’, 

‘Physics’, ‘Molecules’. 

The ‘Load’ tab is a text report about loading process of parameters describing an ensemble 

of molecules. 

The ‘View’ tab (Fig. 4.4) contains the parameters responsible for displaying the ensemble of 

molecules. 

After the coordinates of the atom are obtained by the formula (4.8), all atoms are sorted by 

distance in the direction of view (vector V1). Scene rendering starts from the farthest atom, this part 

of the algorithm can be eliminated by unchecking ‘Z buffered’. The following is the part of the 

algorithm that displays the atom in the form of a filled circle, the ‘Draw ball’ checkmark, the part of 

the algorithm responsible for displaying the bond between the atoms is marked the ‘Draw bonds’ 

checkmark, and finally, the ‘Atom Name’ checkmark is responsible for the code that labeled the 

atom’s name. 

Two checkboxes ‘Analysis background’ and ‘Potential background’ allow you to display the 

contents of the ‘Analysis’ and ‘Power potential’ windows as the background for the molecules on 

the main screen. This feature is provided for creating videos. 

The checkbox ‘Calculation Report’ enables the mode of displaying internal variables on the 

graphical screen when computational errors occur. 

In order for the calculation process to be accompanied by recording frames in a video file, 

just check the ‘Save AVI when Start’ checkbox and select the ‘Frame Time’ option. The file name 

and location of the video will match the name and location of the description file of the downloaded 

scene (* .mlc). 

In the process of constructing the central projection, the scaling factor is determined by two 

parameters, the distance from the center projection point to the object d1 and the distance from the 

center projection point to the view plane d2, font scaling is performed according to the formula 

FontSize = 3+(d2/d1)*FontScale. ‘Font Scale’ is available for editing in the window of the same 

name. 

The ‘Mouse wheel’ contains two more parameters that can be changed using the mouse 

wheel. This is the offset to the projection center ‘Central projection Point’, which is the parameter h 

from formula (4.1) and the common factor ‘Scale Factor’, by which all coordinates in the projection 

plane are multiplied. 

The parameters circled by the general outline ‘Info’ are information blocks, the display of 

which is activated by clicking on the corresponding navigation area i1, i2, i3, i4, located in the lower 

right corner of the main window (Fig. 4.2). The filling of the block is determined by the parameters 
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selected on the ‘View’ tab. Information blocks i1, i2 relate to the whole scene, and blocks i3, i4 relate 

to the selected molecule. 

  

Fig. 4.4 The window ‘WorkSpace’, tab ‘View’. Fig. 4.5 The window ‘WorkSpace’, tab 

‘Physics’. 

The ‘Physics’ tab, fig. 4.5 contains parameters related to the physical model of the described 

scene. The main parameter that determines the dynamics of the calculation is ‘TimeStep’, this is a 

step of the algorithm for the numerical integration of the equations of motion. As a numerical 

integration algorithm, one can choose a fourth-order Runge-Kutta algorithm or an implicit fourth-

order Adams method. 

Comparing the work of the Runge-Kutta algorithm with the implicit Adams method, I could 

not make out the differences between them. As a comparison criterion, the accuracy of conservation 

of the total energy of the system during the collision of two model particles in a strongly varying 

potential (2.17) was used. Both methods of the 4th order give the same accuracy and have the same 

computational cost. 

The 'Truncate’ field specifies the distance of half of the edge of the virtual cube associated 

with the center of mass of each molecule. Molecules whose centers of mass is located within this 

cube participate in the total force acting on the molecule. The action of molecules outside the cube is 

ignored. 

The ‘Termostat’ checkbox includes an algorithm, such as Berendsen, which is a global 

thermostat that scales all molecules [20], the velocity vector of each molecule retains direction, 

scales according to the target temperature, while the effect on velocity is set by a parameter 

expressed as a percentage. 

The ‘Ext. Pressure’ checkbox is available only if the Volume tab, press Volume button 

calculation mode is selected. This mode includes external force field acting on each molecule. The 

external field is given by a quadratic potential and is known as harmonic confinement. The system 

becomes non homogeneous, the target pressure corresponds to the center of the accumulation of 

molecules. Such a barostat algorithm is not standard and is under discussion. 

Flag ‘Rotation Energy (6N)’ must be reset for monatomic molecules see formula (3.66). 

The ‘Conservation Law Check’ checkbox enables an algorithm that calculates the total 
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moment of the amount of movement. In the process of compression of the system by an external 

force field, an uncompensated moment of forces arises, leading to the unwinding of the system. 

When a total amount of movement occurs, a counter-torque will be formed to prevent unwinding. 

The ‘Analysis’ parameter group contain the time intervals that calling computational 

procedures.  

‘Save to Analysis Time’ is the time interval after which data is recorded that can be tracked 

as graphs in the Analysis window.  

‘Volume calculation Time’ is the time interval after which the surface covering the 

molecules is constructed and its volume is calculated.  

‘Average Values Calculation Time’ is the time interval after which the average values of 

energy, temperature, pressure are calculated.  

’Virial Calculation Time' is the time interval after which the instantaneous value of the 

Clausius virial is calculated.  

‘Conservation Law Check Time’ is the time interval after which the total kinetic moment is 

calculated.  

The ‘Debug Off/On’ button makes available the fields that control the recording of the 

calculation process parameters in the file. All variables are written to the file in program units (3.8), 

time in units of 10fS, distance in angstroms, etc. 

In addition, in Debug On mode, the hotkey ‘K’ becomes available, which opens a window 

named ‘Keyhole’, which displays the current values of key program variables. A copy of the 

contents of the ‘Keyhole’ window is saved in a file named KHhh.mm.SS.ss.txt , where hh.mm.SS.ss 

is the system time in the format hh - hours, mm - minutes, SS - seconds, ss – milliseconds. If the 

runtime error occurred in the thread performing the calculation, the option to call the ‘Keyhole’ 

window should remain operational, since it is implemented in the thread processing the events of the 

main window, which allows you to save the current values of the calculated parameters for 

analyzing the causes that caused the error. 

The ‘Save Motion to log’ checkbox enables recording the coordinates of the centers of mass 

of molecules and the Rodrigue-Hamilton parameters in a binary file with the extension ‘xyz’. The 

file format is described in §4.9. To play the motion stored in the ‘xyz’ file, the utility is used 

xyzPlayer.exe , which loads scene parameters from a file with the *.mlc extension and motion path 

from a file with the ‘xyz’ extension. 

Each log file is recorded in text form, a list of variables is listed in the file header, the time 

interval the recording is performed corresponds to the ‘Save To Analysis Time’ variable. 

The parameter ‘Cube length’, sets the size of the cube which keeps the molecules are placed. 
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Fig. 4.6 ‘WorkSpace’ window, ‘Ray tracing’ tab. Fig. 4.7 The 'WorkSpace’ window, the ‘Volume’ 

tab. 

The ’Ray tracing' tab (Fig. 4.6) contains parameters that control ray tracing, described in 

§4.2. By default, ray tracing is disabled (check mark on the ‘View’ tab), because it reduces the 

calculation performance. The frame ‘Atoms (Lambert-Phong-Blinn model)’ contains the 

coefficients KDIFFUSE, KREFLECT, KSTRAY, which determine the realistic visualization of atoms. 

Similarly, the frame ‘Surface (Lambert-Phong-Blinn model)’ contains coefficients for constructing a 

realistic surface covering a set of atoms.  

The ‘3D World’ frame contains the components of the background color of the main 

window, the coordinates of the light source and the ‘Half atom radius’ check mark, which reduces 

the radius of the atoms by 2 times when the ray tracing mode is selected. 

The ‘Volume’ tab (Fig. 4.7) contains parameters that affect the calculation of the volume of a 

molecule or a cluster. The ‘Atoms list’ frame contains parameters defining the selection of outer 

layer atoms of the molecule or cluster, which were described in §3.13. To force the selection of 

clusters, you can click on the ‘Cluster Analysis’ button on the ‘Molecules’ tab. 

The 'Surface’ frame defines the method of surface construction described in §3.13. 

The ‘Molecules’ tab contains buttons that allow you to add molecules from another file to 

the scene, delete a molecule, clone a selected molecule by assigning random coordinates to it. 

   

4.5 The ‘Edit’ window 

The editor window contains the tabs ‘Atoms’, ‘Bond’, ‘Force’, ‘Molecule’, ‘Debug’.  

The ‘Atoms’ tab (Fig. 4.6.) lists all the selected molecule atoms.  

First, the parameters related the whole molecule: 

• the molecule name, the number of atoms, the total molecule mass; 

• the center of mass velocity; 

• the angular velocity included in equation (3.38); 

• the center of mass current coordinates; 

• the inertia tensor main values; 

• the main axis direction of inertia I1; 

• the main axis direction of inertia I2; 

• the main axis direction of inertia I3. 
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The next is a listing of each atoms parameters: 

Periodic table atom number, the atom name, the empty field; 

• the atom coordinates in the world coordinate system; 

• the atom mass, the radius, the charge; 

• R, G, B colors (0 ÷ 255) component.  

  

Fig. 4.8 The ‘Edit’ window, ‘Atoms’ tab. Fig. 4.9 The ‘Edit’ window ‘Bonds’ tab. 

The tab ‘Bonds’ (Fig. 4.9) shows the matrix of bonds of the edited molecule. This window 

also used to edit the distances between atoms and angles between selected directions. 

The program recognizes the atom by clicking the mouse in the main window. The selected 

atom is displayed in the main window with a red circle with a crosshair (Fig. 4.10), in the list of 

atoms (Fig. 4.8), the selected atom is displayed with a red field in the left column of the table, in the 

bonds table (Fig. 4.9), the selected atom is displayed with a darkened row of column. You can also 

select an atom by clicking on the Atom row in the left column of the atom table (Fig. 4.8). 

 
 

Fig. 4.10 Editable molecule. Fig. 4.11 Change of the valence angle. 

To change the length of the bond or the angle between the bonds, you need to select vectors 

using the right and left mouse buttons by clicking on the fields of the bonds table (Fig. 4.9). The 

selected vectors are displayed in the main window (Fig. 4.10). If the vectors have a common point 

and it coincides with the selected atom, the ‘Valence Angle’ parameter is activated and it becomes 

possible to change the angle for the atom pointed at by the arrow, or the group of atoms pointed at 

by the arrow (Fig. 4.11). The axis of rotation is displayed as a yellow dotted line. 
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To change the torsion angle, it is necessary that the blue and green vectors are located on 

different sides of the twisted link, as shown in Fig. 4.11. The axis of rotation is the selected bond, 

which is displayed in red. 

If only the blue vector is selected, the ‘Distance’ field is activated and it becomes possible to 

change the bond length to the atom indicated by the blue arrow, or to a group of atoms. 

You can cancel the selection of vectors intended for editing by clicking on the upper-left 

corner of the bonds table, marked as ‘Clr'. 

 

 
 

Fig. 4.12 Change of the torsion angle. Fig. 4.13 The 'Power Potential' window. 

The ‘Force’ tab shows a list of the interaction potentials parameters for the atoms that make 

up the editable molecule, the ‘Force’ tab is shown in Fig. 2.14. 

The ‘Molecule’ tab is shown in fig. 2.2 and is described in §2.1. 

The ‘Debug’ tab allows you to explore the rotation matrix, and is described in §3.6. 

 

4.6 The window ‘Power potential’ 

The ‘Power Potential’ window (Fig. 4.13) allows you to select the interaction potential of a 

pair of atoms (red line) which displays a histogram of interatomic distances for the selected pair of 

atoms. The arrows at the top of the window allow you to change the distance interval displayed 

along the X axis. 

 

4.7 The window ‘Analysis’ 

 ‘Analysis’ window, Fig. 4.10 is used to display graphs of temperature (3.61), kinetic energy 

of translational degrees of freedom (3.52), kinetic energy of rotational degrees of freedom (3.54), 

potential energy (3.58) and total energy, which is considered as the sum of all the listed energies. 

The time scale of all graphs is represented in pS, using the notation introduced in §3.1 from 

(3.3) we obtain 

(p ) (10 )0.01S fSt t  .  

The parameters to describe the ensemble of molecules are calculated at time intervals 

specified by the ‘Save to Analysis’ parameter, which is located on the ‘Physics’ tab of the 

‘WorkSpace’ window. 

The ‘Average Time’ parameter sets the time during which the sum of the energies of all 
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degrees of freedom is accumulated to calculate the temperature. 

 

 

 

Fig. 4.14 The ‘Analysis’ window. Fig. 4.15 The ‘Automation’ window,  

‘Constructor’ tab. 

 

4.8 The ‘Automation’ window 

The ‘Automation’ window is an add-on control for the molecular dynamics program. Here 

you can automatically generate molecules, set the parameters providing condensation of the 

molecular crystal, set the parameters of the automatic movement of the camera. The ‘Automation’ 

window contains the tabs ‘Variator’, ’Constructor’, ‘Cooling Strategy’, ‘Camera’, ‘Info’. 

The ‘Constructor’ tab (Fig. 4.15) contains the parameters of the automatic generator of 

charged spatial structures. The spatial structure generation begins with the ‘3AMG’ (3 Atoms 

Molecule Geometry) method. This method builds in space 3 atoms with a given angle  between 

atoms and given distances d between atoms. The reference plane defined by three atoms can be 

considered as the basis for further atomic growths. 

The construction is performed as follows. The first atom is placed at a point with random 

coordinates (x0, y0, z0). For the second atom, we construct a unit vector with random coordinates 

(x1, y1, z1), and depart from the first atom in the direction of a random unit vector by a distance d. To 

find the coordinates of the third atom (x2, y2, z2), one must satisfy the equation 

1 2 1 2 1 2 cos( )x x y y z z    , (4.9) 

The desired vector (x2, y2, z2), we assume it to be unity, describes a cone with the axis of symmetry 

given by the vector (x1, y1, z1). Due to the arbitrary orientation of the first vector, we can choose any 

solution, however, we cannot assign arbitrary values to two coordinates and find a third, because it 

is difficult to guess the values at which the equation has a solution. We expand the space of our 

searches as follows. We introduce a straight line perpendicular to the first vector. Points located on a 

line with coordinates (x3, y3, z3) must satisfy the equation 

1 3 1 3 1 3 0x x y y z z   . (4.9) 

If the coordinate z1 is not equal to zero, we can choose arbitrary values x3, y3, and construct a 
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solution 

1 1
3 3 3

1

1 1
x y

x y z
z


    . (4.10) 

We normalize the vector (x3, y3, z3) by one and consider the vectors (x1, y1, z1) and (x3, y3, z3) 

as a local orthonormal basis in which the desired unit vector (x2, y2, z2) has the coordinates cos() 

for the first axis and sin() for the second axis. Having retreated, at these distances in the direction 

of the basis vectors and adding them, we obtain the coordinates of the vector (x2, y2, z2): 

2 1 3cos( ) sin( )x x x   , 

2 1 3cos( ) sin( )y y y   , 

2 1 3cos( ) sin( )z z z   . 

(4.11) 

In the direction of the found vector (x2, y2, z2) we step back by a distance d. 

The 'Construction' tab also has the Asymmetry parameter, expressed as a percentage, this 

parameter allows you to add asymmetry to the distances between atoms, the distance to the second 

atom is calculated as d (1-Asymmetry/100), to the third atom, as d*(1+Asymmetry/100). 

Of course, in WCSs, all vectors that specify the coordinates of atoms are also shifted in the 

direction of the vector (x0, y0, z0). 

There are three atoms on the ‘Constructor’ tab, clicking on which opens the periodic table 

(Fig. 4.12), in the first period, Ex, Ey atoms are added, to which you can assign arbitrary properties. 

Below are the charges ‘Charge’, attributed to the point at which the atom is located. Below is 

the ‘Distance’ parameter (d in formulas (4.9 - 4.11)), which will run through the set values within 

the given limits with the step ‘Step’. 

Next is the ‘Angle’ parameter ( in formulas (4.9 - 4.11)), which runs over the values within 

the given limits with the step ‘Step’. 

The last line sets the number of molecules ‘Molecules’ and the ‘Distribution Min Distance’ 

parameter, which indicates that if the molecules are randomly located in the cube, the distance 

between the nearest ones should not be less than the specified value. If this condition is not satisfied, 

the program will build a new distribution until it exhausts the maximum number of attempts. 

 

 

Fig. 4.16 Periodic tabel. Fig. 4.17. The window ‘Automation’, ‘Cooling 

Strategy’ tab. 
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When you click the ‘Start’ button in the ‘Automation’ window, the program will automatically 

create a scene from the constructed molecules, start the algorithm for solving dynamics equations, 

and the ‘Cooling Strategy’, ‘Camera’ tabs parameters will take effect. 

The ‘Cooling Strategy’ tab, Fig 4.17, contains a parameters that sets the total simulation time 

‘Max Time’ and parameters that control the condensation of molecules. Over the time intervals 

Part1, Part2, Part3, the linear and angular velocities are multiplied by the coefficient K, denoted as 

‘Multiplicate’, the multiplication is performed at the time interval specified after the ‘per’ prefix. 

The ‘Camera’ tab contains the period during which the type of movement selected from the 

drop-down window is valid and the time interval over which the camera’s movement is applied. 

The ‘Info’ tab contains a text report on the process of generating an ensemble of molecules. 

If the checkbox ‘Save AVI when Start’ is checked before starting the program from the 

‘Automation’ window, the program will automatically generate scenes with various molecules and 

save the video file with the process of their condensation. 

Once ‘Max Time’ is reached, the program stops the simulation of the mechanic’s equations 

and proceeds to the analysis of the condensed state. First, molecular clusters are determined; for this, 

a list of all pairs of atoms is constructed, the distance between which is less than the minimum point 

of the potential interaction energy rm (2.16). Then an arbitrary atom is taken from the resulting list 

and the construction of a tree of atoms having a connection with it begins, each atom assigned to the 

tree is deleted from the original list. The procedure for constructing trees continues until a single 

atom remains in the list of coupled pairs of atoms. As a result, we get lists of atoms bound in 

clusters. 

For each cluster found, the center of mass, the inertia tensor (as a characteristic of the 

asymmetry of formation), the dipole moment vector, and the dispersion of the coordinate 

distribution, which is called gyration radius in [27], are calculated and calculated as 
1 2

21
(m r )

cN

c i i

ic

Rg N
m

 
  

 
 . 

 

Since we already have the inertia tensor for the cluster, the following quantity is calculated as 

a parameter of a similar gyration radius 
1 2

2 2 21
( ) ( ) ( )

cN

i o i o i o
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Rg x x y y z z
N

 
      

 
 ,

 (4.25) 

where the index i runs through all the coordinates of the atoms of the cluster, the index “0” marks 

the coordinates of the center of mass of the cluster. All calculated parameters are saved in a text file 

with the * .log extension and the name matching the scenario filename. 

 

4.9 File structures  

The ensemble of molecules is represented on the disk by two text files with the same names: a 

file with the *.mlc extension and a file describing interaction potentials with the *.ptn extension. 

The *.mlc file reads line-by-line information, lines starting with a semicolon are comments 

and ignored by program. 

Below is an example of a file, the contents of a text file are shown in bold, the comments 

shown italic blue. 

 

; Object identefications: - comment; 
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; - comment;; 

3 – the number of molecules in the scene; 

0.000200  – step of numerical integration, nS;  

0.100000 –Save to Analysis, nS; 

2.000000 –Average Time, nS; 

2.000000 –Volume Time, nS; 

2.000000 –Virial  Time, nS; 

;Box parameters: - comment; 

3.800000,0.300000,-1.199998 – cube center; 

15.000000 – cube edge length; 

Reflect – molecules are reflected from the walls of the cube; possible values are Reflect, Thru; 

;Camera: - comment; 

9.091769,-0.054743,-17.832886  – vector V0; 

-0.342939,0.022544,0.939087 – vector V1;; 

0.939356,0.010324,0.342790 – vector V2; 

-0.003449,0.999686,-0.024814 – vector V3; 

12.354342 – indent for a central projection point; 

207.992208,0.100000 – general scale (Scale Factor), font scale (Font Scale); 

;================= Molecule: 1 ================= - comment; 

Water – name of the molecule; 

5- тumber of atoms in a molecule 

1.635943,0.184179,-0.366123 – coordinates of the 1st atom; 

1.333735,0.767041,-1.120677 – coordinates of the 2st atom; 

2.433070,0.531541,-0.860432 – coordinates of the 3st atom; 

2.118074,-0.212104,0.134254 – coordinates of the 4st atom; 

0.873951,0.054424,-0.160248 – coordinates of the 5st atom; 

Atom name reference: - obligatory field; 

8,12.000000,O, ,  - atom number, atom mass, symbol (up to 3 symbols separated by commas); 

1,1.000000,H, , - atom number, atom mass, symbol (up to 3 symbols separated by commas); 

1,1.000000,H, , - atom number, atom mass, symbol (up to 3 symbols separated by commas); 

0,0.000000,Q, , - atom number, atom mass, symbol (up to 3 symbols separated by commas); 

0,0.000000,Q, , - atom number, atom mass, symbol (up to 3 symbols separated by commas); 

0.000000,0.300000 – atomic charge, atomic radius; 

RGB: 200,100,100 - the color with which the circle is painted; 

0.230000,0.100000 – atomic charge, atomic radius; 

RGB: 100,100,200- the color with which the circle is painted; 

0.230000,0.100000 – atomic charge, atomic radius; 

RGB: 100,100,200- the color with which the circle is painted; 

-0.230000,0.000000 – atomic charge, atomic radius; 

RGB: 0,100,0- the color with which the circle is painted; 

-0.230000,0.000000 – atomic charge, atomic radius; 

RGB: 0,100,0- the color with which the circle is painted; 

Center of gravity: - obligatory field; 

1.671295,0.250624,-0.455327- coordinates of the center of mass of the molecule; 

1.810111,0.665863,1.144248 – main values of the inertia tensor of the molecule; 

0.027588,0.796402,0.604139 – direction of the main axis of inertia; 

-0.302893,-0.569296,0.764303- direction of the main axis of inertia; 

0.952626,-0.204075,0.225519- direction of the main axis of inertia; 

Initial value: - obligatory field; 
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-0.009220,-0.009631,0.009766 - components of the velocity of the molecule; 

0.014353,-0.039785,0.045832- components of the angular velocity of the molecule; 

14.000000 - the mass of the molecule; 

1- attribute of an active (mobile) molecule; 

0SSZZ - link matrix S-Single, Z-dot, 0-no link; 

00000 

00000 

00000 

00000 

;================= Molecule: 2 ================= 

… 

The *.ptn file reads line-by-line information, lines starting with a semicolon are considered 

comments and are ignored. 

Below is an example of a *.ptn file, the contents of a text file are shown in bold, the comments 

shown italic blue. 

The first 10 characters are a text comment, then the parameters are read using the C language 

pattern "% i,% i,% lf,% lf,% lf". 

 

; Atom-atom potential: - comment; 

; - comment; 

6 – number of potentials; 

OH O-H    8,1,0.000000,0.000000,0.000000 – atom number 1, atom number 2, ,,rm  from (2.17). 

HH H-H    1,1,0.000000,0.000000,0.000000 – atom number 1, atom number 2, ,,rm  from (2.17). 

OQ O-Q    8,0,0.000000,0.000000,0.000000 – atom number 1, atom number 2, ,,rm  from (2.17). 

QQ Q-Q    0,0,0.000000,0.000000,0.000000 – atom number 1, atom number 2, ,,rm  from (2.17). 

HQ H-Q    1,0,0.004000,5.000000,0.561000 – atom number 1, atom number 2, ,,rm  from (2.17). 

OO O-O    8,8,0.003280,5.000000,3.479000 – atom number 1, atom number 2, ,,rm  from (2.17). 

 

Information about atoms and pair interaction potentials is stored in the Atom.cfg text file. 

Information from this file is displayed in the ‘Mendeleev’s Table not Periodic Table’ window. Each 

file line contains the following data: table row number, table column number, 3 characters of the 

atom’s name, atom number, atom mass, atom radius 1 (for metals - metal, for non-metals - 

covalent), atom radius 2 (for metals - metal, for non-metals - covalent), R, G, B components of the 

color by which the atom is displayed, parameters of the pair interaction potential , , rm. The 

program uses the value of the second atomic radius of the atom. 

 

1  1   H   1   1.00797     0.79   0.32  60   60   60    0.000     0.000  0.000 

8  1   He  2   4.0026      0.49   0.93  217  255  255   0.000880  5.400  2.869 

1  2   Li  3   6.939       2.05   1.23  204  128  255   0.000     0.000  0.000 

2  2   Be  4   9.0122      1.4    0.9   194  255  0     0.000     0.000  0.000 

3  2   B   5   10.811      1.17   0.82  255  181  181   0.000     0.000  0.000 

4  2   C   6   12.01115    0.91   0.77  144  144  144   0.000     0.000  0.000 

 

The trajectory file has the extension ‘xyz’ and contains the following C language data 

structures  

typedef struct MOTION {  

int N;  
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double X0,Y0,Z0;  

double l0,l1,l2,l3; } MOTION; 

where, N is the number of the molecule, variables X0, Y0, Z0 are the coordinates of the 

center of mass of the molecule, variables l0, l1, l2, l3 are the Rodrigue-Hamilton parameters. For 

each time step defined by the FrameTime parameter, MOTION-type structures are recorded for all 

molecules, so a molecule with the number 0 is a sign of the beginning of a new time frame. 

 

4.10 The xyzPlayer.exe utility 

To play the trajectory file recorded in the ‘xyz’ file format, a utility is provided xyzPlaer.exe. 

The main window of the program is shown in Fig. 4.18, the navigation control panel is shown in 

Fig. 4.19. 

 

 
Fig. 4.18 Main window xyzPlayer.exe. Fig. 4.19 Navigation through the trajectory file. 

To download the molecular workspace, you need two files, a scene description file with the 

extension *.mlc and a trajectory description file with the extension *.xyz. 

The controlling interface is the same as in the main program, the ‘View’ tab contains an 

additional area of ‘Motion Control’ (Fig. 4.19). On the ‘Motion Control’ tab there are buttons for 

navigating through the frames ‘Play’, ‘Stop’, ‘Play Back', ‘+1’, ‘-1’. There is also a ‘Go to Frame’ 

button to force a transition to a given frame and a ‘Save as File’ button that saves the data of the 

selected frame to a text file so that you can make sure there are no errors when interpreting the 

binary file of trajectories. 

The ‘Camera Motion’ checkbox allows you to adjust the movement of the ‘camera’ during 

the playback of the trajectory file.  

The ‘Save AVI’ checkbox, as before, allows you to save the movement in the ‘avi’ format 

file. Calculations of physical parameters (temperature, energy, etc.) are not provided in the 

xyzPlayer utility. 

Calculations of physical parameters (temperature, energy, etc.) are not provided in the 

xyzPlayer utility. 
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5 Test of the program 

5.1 Conservation of energy test  

One of the most easily verified results is the total conservation energy test for NVE 

ensemble. The total energy conservation is checked separately for translational motion and 

rotational motion. The results are shown in Fig. 5.1a, b. 

  

(a) (b) 

Fig. 5.1 Kinetic energy (red) potential energy (blue) total energy (yellow), the difference between 

the total energy at the initial moment of time and the instantaneous value of the total energy (black). 

The black line values are shown on the additional axis on the right side. (a) - translational motion 

(2atom.mlc). (b) - rotational motion. 

The model problem of the two atoms collisions in the one-dimensional case was already used 

in §3.8. Two Ne atoms are separated by a distance of 4 Å, have charges of +0.1 and -0.1 С, 

interaction potential parameters  = 0.03067,  = 5.1, rm = 3.086, m = 20.183. A pair of atoms 

oscillates indefinitely, the result of calculating the kinetic, potential and total energy is shown in 

Fig. 5.1 a, b, the step of numerical integration is 0.0005×10fS, the red line shows the kinetic energy, 

the blue line, the potential energy, the yellow line, the total energy. The black line shows the 

difference between the energy at the initial time and the instantaneous total energy, the values are 

shown on the additional axis on the right side. At time 20 pS, the energy difference is -4.8×10
-5

 eV, 

which is 0.13% of the total energy at the initial time. 

The group of equations described rotational motion is studied similarly. The model problem 

is a pair of linear two atoms molecules. The molecules are in the same plane, the lines connecting 

the of each of the atoms are parallel and spaced 4 Å apart. Atoms located on one side are charged 

with +0.1 and -0.1 C, the parameters of the interaction potential are the same as before  = 0.03067, 

 = 5.1, rm = 3.086. Atoms on the other side of the molecule are “balances” that have zero charges 

and do not interact with each other. One of the molecules is stationary, and the other can freely 

rotate relative to the center of mass. The main values of the inertia tensor 280.0, 280.0, 280.0, 

assigned in such a way that the oscillation period coincides with the oscillation period of the first 

problem. The numerical integration step is 0.0005×10fS. The system performs infinite oscillation 

but now the rotation is described by the chain of equations given in Table 3.1. 

The described model task is stored in the rotate1XY.mlc file, in order to exclude the 

translational components of the movement, it is necessary to check the 

‘Parameters\Workspace\Physics Rotation Only’ checkbox, the option becomes available after 

clicking the ‘Debug On/Debug Off’ button. 

The result of solving equations describing rotational motion is shown in Fig. 5.1 b. the red 

line shows kinetic energy, the blue line, potential energy, the yellow line, the total energy. The black 
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line shows the difference between the total energy at the initial moment of time and the 

instantaneous value of the total energy. At time t = 20 pS, the energy difference is -7.2×10
-5

 eV, 

which is -0.16% of the total energy at the initial time. 

In both cases, after approximately 20 collisions of a pair of atoms, the total energy error does 

not exceed 0.2%. On the other hand, in both cases the total energy drift is visible, due to the 

instability of the numerical scheme when calculating in the vicinity of a strong change in the pair 

interaction potential, i.e., in a collision. 

The real world objects are necessarily part of something larger, which can be considered as a 

thermostat, so NVT ensemble is closer to reality. Fortunately, the average values in the limit N→∞ 

for both ensembles coincide, however, the higher moments and in particular fluctuations for 

different ensembles are different [28]. 

 

5.2 Helium heat capacity 

The inert gases pair interaction potentials of are well known, for helium  = 0.000880,  = 

5.4, rm = 2. 869 (Table 2.1.). The program has the ability to heat or cool the system, heat 58 He 

atoms at different speeds (Helium58-2.mlc file), approximate the dependence of kinetic energy on 

time (the total energy will grow at the same rate) and the dependence of temperature on time by 

linear functions of the form 
0( ) EE t E K t  , 

0( ) TT t T K t   then, given that the volume of the 

system is fixed 

E
V

V T

E KE T
С

t t KT

   
   

    
(5.1)  

 

  

(a) (b) 

Fig. 5.2. Heating of 58 He atoms at different rate and approximation temperature grows.  

To recalculate the heat capacity to standard units [J×mol-1×K
-1

], the energy in electron volts 

must be converted into Joules, divided by the number of particles in the simulated system N and 

multiplied by the Avogadro number 

191.6021 10 12.581E A
V

JT
K mol

K N
С

K N





 
    
   (5.2) 

The value given in (5.2) corresponds to the graph of Fig. 5.2 (a), for modeling Fig. 5.2 (b) we have 

CV =12.895. 
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The experimental value [20] 

1.51 12.555VС R  
 
J×mol

-1
×K

-1

 
(5.3) 

The first case, the relative deviation is 0.2%, in the second 2.7%. 

The above definition of isochoric heat capacity is a solution to the problem “head-on". To find the 

heat capacity usually use the ratio [20] 

2 2

b VNVT
H k T C 

, 
(5.4) 

where H is the Hamiltonian of the particle system. The relation (5.4) is valid only for the canonical 

ensemble. The issue of recalculation of fluctuations during the transition from the canonical to the 

microcanonical ensemble was solved in [20]. The formula for calculating the heat capacity is given 

from [25, formula (2.82)] 
1

2

2 2

23
1

2 3

k NVE A
V b

b

E N
С Nk

Nk T N




 
  
 
  ,

 
(5.5) 

Formula (5.5) is left in the form in which it is given in [25], a multiplier is added to the right, 

bringing the heat capacity to the molar. 

 

Fig. 5.3 The kinetic energy fluctuations (red), potential energy (blue), temperature (gray) for 58, 68, 

78, 88 He atoms. 

The energy fluctuations are expressed in electron volts, which must be converted to Joules 

 
1

2
2 19

2 2

2 1.6021 103
1

2 3

k NVE A
V b

b

E N
С Nk

Nk T N




  
  
 
  .

 
 

The calculation results of the isochoric heat capacity for an ensemble of N He atoms are 

shown in Table 5.1. 

Table 5.1 

N 2

k NVE
E , (eV)  CV, (J×mol

-1
×K

-1
) Error, (%) 

58 0.000324207 12.540 -0.1 

68 0.000354571 12.536 -0.2 

78 0.000710230 12.585 0.2 

88 0.000813129 12.586 0.2 
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So, the isochoric heat capacity CV was calculated via microscopic model of the molecule 

coincides with the experimental value (5.3) with an error at the level of tenths of a percent. 

 

 

6 Conclusion 
The given results shows that the program correctly reproduces the heat capacity of inert 

gases, which means that all the calculation schemes implemented in the program code do not 

contain errors. 

The next step would be to see to practically significant tasks application. However, most of 

them are cross-disciplinary and involves the interaction of specialists with different areas of 

specialization. 

The work was done exclusively on enthusiasm, by one person, so that all the code placed in 

one head, therefore, it will not be difficult to modify the program for a close engineering task. 

The author is open to any questions concerning the application of the program code. 
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